首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G Barbato  M Ikura  L E Kay  R W Pastor  A Bax 《Biochemistry》1992,31(23):5269-5278
The backbone dynamics of Ca(2+)-saturated recombinant Drosophila calmodulin has been studied by 15N longitudinal and transverse relaxation experiments, combined with 15N(1H) NOE measurements. Results indicate a high degree of mobility near the middle of the central helix of calmodulin, from residue K77 through S81, with order parameters (S2) in the 0.5-0.6 range. The anisotropy observed in the motion of the two globular calmodulin domains is much smaller than expected on the basis of hydrodynamic calculations for a rigid dumbbell type structure. This indicates that, for the purposes of 15N relaxation, the tumbling of the N-terminal (L4-K77) and C-terminal (E82-S147) lobes of calmodulin is effectively independent. A slightly shorter motional correlation time (tau c approximately 6.3 ns) is obtained for the C-terminal domain compared to the N-terminal domain (tau c approximately 7.1 ns), in agreement with the smaller size of the C-terminal domain. A high degree of mobility, with order parameters of approximately 0.5, is also observed in the loop that connects the first with the second EF-hand type calcium binding domain and in the loop connecting the third and fourth calcium binding domain.  相似文献   

2.
We investigated phosphodiesterase (PDE) isozymes, which hydrolyze cAMP, in rodent parotid glands (mouse, hamster and guinea pig) in order to clarify the effects of cGMP and Ca/calmodulin on the regulation of cellular cAMP and compared them with those of the rat. More than 80% of the activities were in the supernatant fractions except for the hamster. The isozymes were fractionated using Mono Q ion-exchange column. The mouse parotid PDEs consisted of PDE1 (Ca/calmodulin-dependent), PDE2 (cGMP-stimulated), PDE3 (cGMP-inhibited) and PDE4 (cAMP-specific) similar to those of the rat. PDE3 was not detected in the hamster, and PDE4 was not detected in the guinea pig. PDE activities in the supernatant of the mouse and the hamster were stimulated by cGMP, and that of the guinea pig was stimulated by Ca/calmodulin. These results suggest that various PDE isozymes are present in the parotid gland of several species of order Rodentia. There seems to be differences among the species with regard to the PDE isozymes.  相似文献   

3.
The calmodulin inhibitor trifluoroperazine (5 microM) diminished the velocity of contraction and relaxation of the guinea-pig papillary muscle by 31 and 53%, respectively. Methophenazine showed approximately the same affinity to both calmodulin and trifluoroperazine and nearly 40-fold less affinity to troponin. Methophenazine (5 microM) did not change the contraction velocity and diminished the relaxation velocity ty 21%. It is suggested that calmodulin participates mainly in the control of myocardial relaxation.  相似文献   

4.
The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.  相似文献   

5.
The Ca2+ uptake of the mitochondria of guinea pig peritoneal macrophages was not stimulated by the addition of calmodulin. However, calmodulin antagonists, both phenotiazines and N-naphthalenesulfonamides, in low concentrations inhibited the Ca2+ uptake of the mitochondoria, as compared to the inhibition of the calmodulin-dependent stimulation of brain phosphodiesterase. These calmodulin antagonists appear to have severe side effects on active processes of the mitochondria and which are unrelated to the specific effect on calmodulin.  相似文献   

6.
The presence of actin has been determined in mammalian spermatozoa. However, its function in these cells is still almost unknown. Only in boar spermatozoa has evidence for F-actin and a possible function for it been presented. In this work, actin distribution and F-actin were determined in uncapacitated, capacitated, and acrosomal-reacted guinea pig spermatozoa, by means of monoclonal and polyclonal antibodies, using an indirect immunoperoxidase technique, and by the use of rhodamine-phalloidin. With the last probe we found filamentous actin in these cells. By both techniques, actin was detected in the acrosome and in the entire tail. In some cells with acrosomal reaction, actin was also detected in the equatorial and in the postacrosomal regions. SDS-PAGE and Western blots immunostained with monoclonal and polyclonal anti-actin antibodies confirmed the presence of actin in extracts of guinea pig spermatozoa. Actin was also detected in preparations of Percoll-purified spermatozoa. We have communicated that guinea pig spermatozoa show a change on calmodulin location during the acrosome reaction. They present it first in the equatorial region and later in the postacrosomal region. To determine if F-actin participates in this calmodulin translocation, we studied the effect of cytochalasin D. It was found that the number of cells with calmodulin in the equatorial region increased in the presence of cytochalasin D while the number of cells with calmodulin in the postacrosomal region decreased. We also found that after cytochalasin D treatment acrosome loss was increased and sperm motility was slightly inhibited. Our results suggest that actin participate in calmodulin translocation to the postacrosomal region during acrosome reaction, in maintaining the acrosome structure, and perhaps also in sperm motility.  相似文献   

7.
The bronchodilator activity of AY-23 578 was studied in vivo and in vitro techniques. In the conscious guinea pig, aerosols of AY-23 578, prostaglandin (PGE2) E2, and isoproterenol afforded significant protection against histamine-induced convulsions. In the anesthetized guinea pig, where changes in tracheal pressure were taken as an index of bronchoconstriction, AY-23 578, PGE2, and isoproterenol were equipotent in inhibiting the bronchoconstriction induced by histamine. AY-23 578, PGE2, and isoproterenol reduced or prevented neostigmine-, prostaglandin F2alpha- or carbachol-induced increases in pulmonary resistance, and decreases in dynamic compliance in the anesthetized cat. The activities of the former two compounds were qualitatively similar but less potent than isoproterenol. In both the guinea pig and the cat, the aerosol administration of effective bronchodilator doses of AY-23 578 did not exhibit any significant cardiovascular effects. Both AY-23 578 and PGE2 caused relaxation of the isolated guinea pig tracheal strip; PGE2 was about six times more potent than AY-23 578. It is concluded that AY-23 578 is an effective bronchodilator in both the guinea pig and cat.  相似文献   

8.
A vasoactive intestinal peptide (VIP)-binding protein purified from guinea pig lung membranes (p18) was digested with trypsin, and the amino acid sequence of the peptide fragments was determined. The sequence of six tryptic fragments of p18 was identical with subsequences present in mammalian calmodulin. Authentic porcine brain calmodulin and p18 co-migrated on an sodium dodecyl sulfate-electrophoresis gel and displayed identical chromatographic behavior on a reverse phase high performance liquid chromatography column. The VIP-binding properties of p18 and calmodulin were indistinguishable. Both proteins displayed saturable and apparent high affinity binding of VIP, evidenced by potent inhibition of complexation with [Tyr10-125I]VIP by unlabeled VIP (IC50 = 6.0-8.1 nM). Rat growth hormone releasing factor and a C terminally extended form of VIP ([Leu17]VIP-GKR) also displayed potent inhibition of the binding (IC50 = 6.4 and 4 nM, respectively). These neuropeptides are potential modulators of calmodulin function.  相似文献   

9.
Platelet and leucocyte calmodulins: isolation and characterisation   总被引:1,自引:0,他引:1  
The calcium-dependent regulatory proteins, calmodulins, have been isolated from human blood platelets and guinea pig peritoneal polymorphonuclear leucocytes using the urea methanol procedure of Grand et al. [Biochem. J. 177, 521-529 (1978)]. The calmodulins were purified to homogeneity as indicated by polyacrylamide gel electrophoresis and both proteins comigrated with bovine brain calmodulin with mobilities corresponding to molecular weights of 16 000-17 000. The yield of calmodulin from platelets was higher on a wet weight basis than the yield from leucocytes but the former compared favourably with yields reported for brain and other tissues. Both calmodulin preparations significantly stimulated brain cyclic nucleotide phosphodiesterase, erythrocyte ghost Ca2+ ATPase and platelet phosphorylase kinase activities at the microgram level. Stimulation of Lubrol-solubilised brain adenylate cyclase was only marginally significant with platelet calmodulin and rarely demonstrable with the leucocyte preparations. Although biological activities of both proteins were retained during storage at -20 degrees C, higher-molecular-weight aggregates slowly formed which could not be dissociated during dodecylsulphate/mercaptoethanol denaturation.  相似文献   

10.
A role for Ca(2+)-calmodulin-dependent kinase (CamK) in regulation of the voltage-sensitive release mechanism (VSRM) was investigated in guinea pig ventricular myocytes. Voltage clamp was used to separate the VSRM from Ca(2+)-induced Ca(2+) release (CICR). VSRM contractions and Ca(2+) transients were absent in cells dialyzed with standard pipette solution but present when 2-5 microM calmodulin was included. Effects of calmodulin were blocked by KN-62 (CamK inhibitor), but not H-89, a protein kinase A (PKA) inhibitor. Ca(2+) current and caffeine contractures were not affected by calmodulin. Transient-voltage relations were bell-shaped without calmodulin, but they were sigmoidal and typical of the VSRM with calmodulin. Contractions with calmodulin exhibited inactivation typical of the VSRM. These contractions were inhibited by rapid application of 200 microM of tetracaine, but not 100 microM of Cd(2+), whereas CICR was inhibited by Cd(2+) but not tetracaine. In undialyzed myocytes (high-resistance microelectrodes), KN-62 or H-89 each reduced amplitudes of VSRM contractions by approximately 50%, but together they decreased VSRM contractions by 93%. Thus VSRM is facilitated by CamK or PKA, and both pathways regulate the VSRM in undialyzed cells.  相似文献   

11.
Ogura K  Okamura H  Katahira M  Katoh E  Inagaki F 《FEBS letters》2012,586(16):2548-2554
Most calmodulin (CaM) in apo and Ca(2+)-bound states show a dumb-bell-like structure, involving the N- and C-terminal domains, connected with a flexible linker. However, Ca(2+)-bound yeast calmodulin (yCaM) takes on a unique globular structure; the target-binding site of this protein is autoinhibited. We applied NMR relaxation dispersion experiments to yCaM in the Ca(2+)-bound state. The amide (15)N and (1)H(N) relaxation dispersion profiles indicated the presence of conformational dynamics for specific residues at the interface between the N- and C-terminal domains. We conclude that these conformational dynamics were derived from the mobility of the C-terminal domain.  相似文献   

12.
Calmodulin has been postulated as a mediator in the calcium-dependent processes that culminate in the acrosome reaction. Changes in calmodulin compartmentalization as a consequence of the increased permeability to extracellular calcium during capacitation and acrosome reaction have been suggested. In the present study the temporal localization of calmodulin in guinea pig spermatozoa was studied during in vitro capacitation and acrosome reaction by indirect immunofluorescence. Capacitation was achieved by incubation in Tyrode medium supplemented with pyruvate, lactate, and glucose in the presence and in the absence of calcium. Acrosome reaction was elicited in three different conditions: 1) by transfer to minimal culture medium containing pyruvate and lactate (MCM-PL) after in vitro capacitation 2) by 0.003% Triton-X 100 treatment, and 3) by A 23187 addition to sperm samples incubated in MCM-PL. During capacitation, calmodulin was observed both in the acrosome and in the flagellum; this localization seemed to be independent of the presence of extracellular calcium and of exogenous substrates. Throughout the acrosome reaction, different stages of calmodulin compartmentalization were observed. It became clustered around the equatorial region just before or a little after the acrosome reaction had occurred. Later, it was observed around the postacrosomal region in the acrosome-reacted sperm. The changes in calmodulin distribution were found to be dependent on the stage in the acrosome reaction.  相似文献   

13.
Previous studies have suggested that the Ca2+-saturated E140Q mutant of the C-terminal domain of calmodulin exhibits equilibrium exchange between "open" and "closed" conformations similar to those of the Ca2+-free and Ca2+-saturated states of wild-type calmodulin. The backbone dynamics of this mutant were studied using15N spin relaxation experiments at three different temperatures. Measurements at each temperature of the15N rate constants for longitudinal and transverse auto-relaxation, longitudinal and transverse cross-correlation relaxation, and the1H-15N cross-relaxation afforded unequivocal identification of conformational exchange processes on microsecond to millisecond time-scales, and characterization of fast fluctuations on picosecond to nanosecond time-scales using model-free approaches. The results show that essentially all residues of the protein are involved in conformational exchange. Generalized order parameters of the fast internal motions indicate that the conformational substates are well folded, and exclude the possibility that the exchange involves a significant population of unfolded or disordered species. The temperature dependence of the order parameters offers qualitative estimates of the contribution to the heat capacity from fast fluctuations of the protein backbone, revealing significant variation between the well-ordered secondary structure elements and the more flexible regions. The temperature dependence of the conformational exchange contributions to the transverse auto-relaxation rate constants directly demonstrates that the microscopic exchange rate constants are greater than 2.7x10(3)s-1at 291 K. The conformational exchange contributions correlate with the chemical shift differences between the Ca2+-free and Ca2+-saturated states of the wild-type protein, thereby substantiating that the conformational substates are similar to the open and closed states of wild-type calmodulin. Taking the wild-type chemical shifts to represent the conformational substates of the mutant and populations estimated previously, the microscopic exchange rate constants could be estimated as 2x10(4)to 3x10(4)s-1at 291 K for a subset of residues. The temperature depen dence of the exchange allows the characterization of apparent energy barriers of the conformational transition, with results suggesting a complex process that does not correspond to a single global transition between substates.  相似文献   

14.
Electrical field stimulation (70 V, 1 ms, 0.2-500 Hz) of human bronchial strips and guinea pig tracheal chains produced contractile and relaxant responses. Contractions were blocked by atropine, 10(-6) M, and tetrodotoxin (TTX), 0.1-1.0 micrograms/ml, demonstrating a cholinergic excitatory neural component. Frequencies causing half-maximal contractile response to field stimulation (EFc 50) were 10 +/- 2 Hz for guinea pig and 13 +/- 1 Hz for human airways. Relaxations were unmasked by atropine 10(-6) M and slightly diminished by propranolol in guinea pig but not human airways, demonstrating a predominantly nonadrenergic inhibitory pathway in both species. Relaxation of intrinsic tone occurred at stimulation frequencies of 1 Hz or more. Frequencies causing half-maximal relaxation (EFi 50) were 3.5 +/- 0.3 Hz for guinea pig trachealis and 38 +/- 6 Hz for human bronchi. Following 1 microgram/ml TTX, EFi 50 values increased to 104 +/- 12 and 70 +/- 14 Hz, respectively. Frequencies of field stimulation that were inhibitable by TTX (less than or equal to 20 Hz) induced greater relaxation in guinea pig than human airways (70 vs. 10% of the maximal relaxation to 10(-2) M theophylline, respectively). The methods of analysis outlined in this study can be used to compare relative degrees of functional innervation between tissues from the same or different species.  相似文献   

15.
Airway smooth muscle (ASM) from infant guinea pigs has less spontaneous relaxation during stimulation than ASM from adults. Inhibition of cyclooxygenase (COX), which catalyzes the production of prostanoids, increases this relaxation in infant ASM and abolishes age differences, thus suggesting that prostanoids reduce relaxation in infant ASM. In this study, we investigated whether leukotrienes are also involved in reducing spontaneous relaxation; whether the two COX isoforms, COX-1 and COX-2, differentially regulate spontaneous relaxation; and whether prostanoid release is developmentally regulated in guinea pig ASM. In different age groups, we measured relaxation during and after electrical stimulation in tracheal strips as well as prostanoid release from tracheal segments. Relaxation was studied in the absence and in the presence of a lipoxygenase inhibitor, a cysteinyl leukotriene receptor-1 antagonist, a COX-1 inhibitor, or a COX-2 inhibitor. We found that inhibition of lipoxygenase or cysteinyl leukotriene receptor-1 antagonism did not increase spontaneous relaxation at any age, thus excluding a role for leukotrienes in this phenomenon. Inhibition of COX-2, but not COX-1, promoted spontaneous relaxation. The basal release of prostanoids was more abundant in tissue from infant animals and decreased significantly with age. Thromboxane B2 was the most abundant metabolite released at all ages. Electrical stimulation and epithelium removal did not affect the age difference in prostanoid release. We conclude that increased basal prostanoid release contributes to the reduced spontaneous relaxation in immature guinea pig ASM compared with older animals. By regulating ASM relaxation, prostanoids may play a role in the airway hyperresponsiveness at a young age.  相似文献   

16.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   

17.
Huang SC 《Regulatory peptides》2011,167(2-3):246-249
Atrial natriuretic peptide (ANP) causes relaxation in the opossum lower esophageal sphincter. The effects of dendroaspis natriuretic peptide (DNP) and other natriuretic peptides in the lower esophageal sphincter were not known. We measured the relaxation of transverse strips from the guinea pig lower esophageal sphincter caused by DNP, ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and a natriuretic peptide receptor-C agonist des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANF(4-23)) in vitro. In resting strips of the guinea pig lower esophageal sphincter DNP and BNP caused marked relaxations. Furthermore, in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips, DNP caused marked and BNP caused moderate, concentration-dependent relaxations. ANP as well as CNP caused mild relaxations. In contrast, cANF(4-23) did not cause relaxation. The relative potencies for natriuretic peptides to cause relaxation were DNP>BNP>ANP>=CNP in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips. The DNP and BNP-induced relaxations were not affected by tetrodotoxin or atropine, suggesting that the natriuretic peptide-induced response was not neutrally mediated. In conclusion, these results demonstrate that natriuretic peptides cause the relaxation of the guinea pig lower esophageal sphincter. DNP is the most potent natriuretic peptide to cause lower esophageal sphincter relaxation, which might be mediated by natriuretic peptide receptor-A or a novel DNP-selective natriuretic peptide receptor.  相似文献   

18.
The activity of inositol-1,4,5-trisphosphate 3-kinase in the cytosol fraction of guinea pig macrophages was assayed with special reference to the dependence on the free Ca2+ concentration. The enzyme activity, as assessed by the production of inositol 1,3,4,5-tetrakisphosphate was reversibly activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6)M. The calmodulin antagonists, W-7 and chlorpromazine, inhibited the Ca2+-activated enzyme activity in a dose-dependent fashion, thereby indicating that calmodulin may be involved in the activation by Ca2+. The content of calmodulin in the cytosol fraction (about 2.8 micrograms/mg of cytosol protein) was markedly reduced to less than 0.03 microgram/mg of proteins by subfractionation by ammonium sulfate, followed by an anion-exchange chromatography. The subfraction obtained by the chromatography showed no Ca2+ dependence in the enzyme activity, while an exogenous addition of calmodulin with 10(-6)M Ca2+ increased the enzyme activity. The enzyme activity was retained on a calmodulin-affinity column in the presence of Ca2+, and was eluted from the column by lowering the free Ca2+ concentration by adding ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. These results clearly indicate that calmodulin activates the inositol-1,4,5-trisphosphate 3-kinase activity.  相似文献   

19.
Frederick KK  Kranz JK  Wand AJ 《Biochemistry》2006,45(32):9841-9848
Calmodulin is a central mediator of calcium-dependent signal transduction pathways and regulates the activity of a large number of diverse targets. Calcium-dependent interactions of calmodulin with regulated proteins are of generally high affinity but of quite variable thermodynamic origins. Here we investigate the influence of the binding of the calmodulin-binding domain of calmodulin kinase I on the fast internal dynamics of calcium-saturated calmodulin. NMR relaxation was used to probe motion on the backbone (viewed through the backbone amide NH group) and the side chains (viewed through methyl groups). The distribution of the amplitudes of side chain dynamics is trimodal. The microscopic details of side chain motion are compared with those of a thermodynamically and structurally similar complex of calmodulin with the calmodulin-binding domain of the smooth muscle myosin light chain kinase. While there are no significant differences in backbone dynamics and no net change in methyl-bearing side chain dynamics, a large redistribution of the amplitude of methyl dynamics is observed between the two complexes. The variation in dynamics was largely localized to the heterogeneously dynamic target-binding interface, suggesting that differential dynamics of the binding surface plays a functional role in the high-affinity binding interactions of calmodulin. These results begin to reveal a fundamental role for residual protein entropy in molecular recognition by calmodulin.  相似文献   

20.
The parameters of inhomogeneous broadening in the fluorescence spectra of 1-anilinonaphthalene-8-sulfonate and N-phenyl-1-naphthylamine, recorded in the systems with respective proteins, have been analyzed in order to shed light on the mechanism of interaction between Ca2+ ions and calmodulin, troponin C and parvalbumin. It was shown that only calmodulin and troponin C but not parvalbumin bind calcium ions with concomitant formation of hydrophobic sites that are responsible for interaction with the "executor enzymes". The relative pools of the probes adsorbed in the hydrophobic sites and polarity of the latter were assessed. These parameters in calmodulin obtained from the brain of spontaneously hypertensive rats or normotensive rats do not differ. It was established that trifluoroperazine and verapamil inhibit the calmodulin-dependent enzymes by essentially different mechanisms. Trifluoroperazine diminishes the relative pool of the adsorbed probe and enhances the polarity of the calmodulin binding sites, whereas verapamil affects these parameters in the opposite direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号