首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active opioid receptors were solubilized from frog (Rana esculenta) brain membrane fractions by the use of 1% digitonin. It was found by kinetic as well as by equilibrium measurements that both the membrane and the solubilized fractions contain two binding sites. For the membrane preparations, KD values were 0.9 and 3.6 nM, and Bmax values were 293 and 734 fmol/mg protein. For the solubilized preparations, KD values were 0.4 and 2.6 nM, an Bmax values were 35 and 266 fmol/mg protein. The stereospecificity of the binding did not change during solubilization. Both the membrane-bound and the solubilized receptors showed weak binding of enkephalin and mu-specific drugs, suggesting that they are predominantly of the kappa-type. The membrane-bound and the soluble receptors showed the same distribution of subtypes, i.e., 70% kappa, 13% mu, and 17% delta for the membrane-bound and 71% kappa, 17% mu, and 12% delta for the soluble receptors.  相似文献   

2.
The neuropeptide Y (NPY) receptor was solubilized from rat brain membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The binding of 125I-NPY to CHAPS extracts was protein, time, and temperature dependent. Unlabeled NPY and the related peptides peptide YY (PYY) and pancreatic polypeptide inhibited 125I-NPY binding to solubilized receptors with relative potencies similar to those seen with membrane-bound receptors: NPY greater than PYY much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data showed the CHAPS extracts to contain a single population of binding sites with a KD of 3.6 +/- 0.4 nM (mean +/- SEM) and a Bmax of 5.0 +/- 0.2 pmol/mg of protein. In addition the 125I-NPY binding to the soluble receptor was not inhibited by guanosine-5'-O-(3-thiotriphosphate), in contrast to the GTP sensitivity displayed by the membrane-bound receptor. Gel filtration chromatography using Sepharose 6B revealed a single peak of binding activity corresponding to a Mr of approximately 67,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis after chemical cross-linking revealed a single band at Mr 62,000. After solubilization and gel chromatography a 50- to 100-fold purification of the NPY receptor was obtained.  相似文献   

3.
Neurotensin receptors were solubilized from mouse brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of 125I-labeled [Tyr3]neurotensin to the soluble fraction was time-dependent, saturable, and reversible. Unlabeled neurotensin and its analogues acetylneurotensin (8-13), neurotensin (9-13), and neurotensin (1-12) competitively antagonized the binding of 125I-labeled [Tyr3]neurotensin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane-bound receptors. Scatchard analysis of equilibrium binding data indicated that the soluble extract contained a single class of neurotensin binding sites with a Kd of 0.36 nM and a Bm of 63 fmol/mg. As already observed with membrane-bound receptors, the affinity of neurotensin for the soluble binding activity was decreased by Na+ ions. By contrast, soluble receptors were no longer sensitive to GTP and the antihistamine drug levocabastine. A molecular weight of about 100,000 was determined for soluble neurotensin receptors both under native conditions by gel filtration on Ultrogel AcA 34 and under denaturating conditions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling.  相似文献   

4.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors.  相似文献   

5.
M Thibonnier 《Life sciences》1987,40(5):439-445
The human platelet membrane receptor for vasopressin (AVP) has been solubilized with the cholic acid derivative detergent 3-( [3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate. Rapid and simple separation of free tritiated AVP ( [3H]AVP) from the solubilized receptor-hormone complex was done by filtration through polyethylenimine-treated filters. [3H]AVP binds to this soluble receptor with an equilibrium dissociation constant of 11.03 +/- 1.86 nM and a maximal number of binding sites = 288 +/- 66 fmol/mg protein while the corresponding values of the membrane-bound receptor are 1.62 +/- 0.21 nM and 237 +/- 38 fmol/mg of protein, respectively. The Ki value for native AVP derived from competition experiments is 11.02 +/- 2.05 nM for the soluble receptor. Competition experiments with specific vascular and renal antagonists confirm that the solubilized receptor belongs to the V1-vascular subtype.  相似文献   

6.
Subhash MN  Srinivas BN  Vinod KY 《Life sciences》2002,71(13):1559-1567
The in vivo effect of trazodone on the density of [(3)H]5-HT binding sites and 5-HT(1A) receptors and adenylyl cyclase (AC) response was studied in regions of rat brain. The chronic administration of trazodone (10 mg/Kg body wt, 40 days) resulted in a significant downregulation of [(3)H]5-HT binding sites and 5-HT(1A) receptors in cortex and hippocampus. Trazodone significantly (p < 0.0001) decreased the density of [(3)H]5-HT binding sites in cortex (42.6 +/- 3.6 fmol/mg protein, 65%) and hippocampus (12.6 +/- 1.6 fmol/mg protein, 87%) when compared to control values of 121.9 +/- 5.4 and 99.3 +/- 7.5 fmol/mg protein in these regions, respectively. Similarly there was a significant (p < 0.0001) decrease in the density of 5-HT(1A) receptors in both cortex (7.2 +/- 0.5 fmol/mg protein, 70%) and hippocampus (6.3 +/- 1.2 fmol/mg protein, 79%) when compared to control values of 24.2 +/- 2.1 and 30.6 +/- 3.7 fmol/mg protein, in these regions respectively. However, the affinity of [(3)H]5-HT to 5-HT binding sites (1.83 +/- 0.26 nM, p < 0.0001) and [(3)H]8-OH-DPAT to 5-HT(1A) receptors (0.60 +/- 0.06 nM, p < 0.05) was significantly decreased only in cortex when compared to the control K(d) values of 0.88 +/- 0.04 nM and 0.47 +/- 0.02 nM in these regions, respectively.The basal AC activity did not alter in treated rats, where as, the inhibition of forskolin-stimulated AC activity by 5-HT (10 microM) was significantly (p < 0.0001) decreased both in cortex (43%) and hippocampus (40%) when compared to control levels. In conclusion, chronic treatment with trazodone results in downregulation of 5-HT(1A) receptors in cortex and hippocampus along with concomitant increased AC response, suggesting the involvement of 5-HT(1A) receptor-mediated AC response in the mechanism of action of trazodone.  相似文献   

7.
Specific binding sites with pharmacological properties typical of serotonin 5-HT3 receptors were identified in membranes of the murine hybridoma cell line NG 108-15, using [3H]zacopride as a ligand. Optimal solubilization of these sites (yield, 50%) could be achieved using the detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 24 mM plus 0.5 M NaCl in 25 mM Tris-HCl, pH 7.4. Specific [3H]zacopride binding to soluble sites in the 100,000-g CHAPS extract was saturable and showed characteristics (Bmax = 425 +/- 81 fmol/mg of protein; KD = 0.19 +/- 0.02 nM) closely related to those of membrane-bound sites (Bmax = 932 +/- 183 fmol/mg of protein; KD = 0.60 +/- 0.03 nM). Determination of association (k+1 = 0.17 nM min-1) and dissociation (k-1 = 0.02 min-1) rate constants for the soluble sites gave a KD value of 0.12 nM, a result consistent with that calculated from saturation studies. As assessed from the displacement potencies (IC50) of 10 different drugs, the pharmacological profile of [3H]zacopride specific binding sites was essentially the same (r = 0.99) in the CHAPS-soluble extract and in cell membranes, although some increase in the affinity for 5-HT3 antagonists (zacopride, ICS 205-930, and MDL 72222) and decrease in the affinity for 5-HT3 agonists (2-methyl-5-hydroxytryptamine and phenylbiguanide) were noted for the soluble sites. Sucrose density gradient sedimentation of the CHAPS-soluble extract gave a Svedberg coefficient of 12S for the material with [3H]zacopride specific binding capacity. Chromatographic analyses using Sephacryl S-400 and wheat germ agglutinin-agarose columns indicated marked enrichment (by 2.5- and 10-fold, respectively) in [3H]zacopride specific binding activity in the corresponding eluates compared with the starting soluble extract, a finding suggesting that both steps are of potential interest for the partial purification of solubilized 5-HT3 receptors. Two soluble materials with apparent molecular masses of approximately 600 and approximately 36 kDa were found to bind [3H]zacopride specifically in the Sephacryl S-400 eluate. Interestingly, molecular mass determination by radiation inactivation of [3H]zacopride binding sites in frozen NG 108-15 cells gave a value of approximately 35 kDa.  相似文献   

8.
Somatostatin receptors were solubilized from rat pancreatic membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). The binding of an iodinated somatostatin analog [125I-Tyr3]SMS to the soluble fraction was time-dependent, saturable, and reversible. Scatchard analysis of equilibrium binding data indicated that the soluble extract contained a single class of somatostatin binding sites with a Kd of 0.3 nM and a Bmax of 210 fmol/mg. As observed with membrane-bound receptors, soluble binding receptors were sensitive to the GTP analog GTP gamma S indicating that they are functionally linked to a G protein. A molecular weight of about 400,000 was determined for soluble receptors under native conditions by gel filtration. In denaturing gel electrophoresis, photoaffinity labeling of soluble receptors identified a major protein of Mr = 100,000 and two minor proteins of Mr = 56,000 and 21,000. Isoelectric focusing of soluble receptors revealed that the somatostatin receptor is an acidic protein with pI 4.8. The soluble somatostatin receptor is a glycoprotein which can be specifically bound to the wheat germ agglutinin lectin and eluted by triacetyl-chitotriose.  相似文献   

9.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

10.
Piracetam, a nootropic drug, has been used for some time in Alzheimer's disease for its facilitatory effect on learning and memory. Rats treated with piracetam (500 mg/kg, p.o.) daily, during 1 and 2 weeks, showed a significant increase in muscarinic receptor number (Bmax) and in the dissociation constant values (Kd) in the cerebral motor cortex, in binding studies using 3H-NMS as ligand. The effect was observed not only in young rats (control- Bmax = 663.4 fmol/mg protein, Kd = 0.45 nM; treated- Bmax = 961.9 fmol/mg protein, Kd = 0.82 nM) but also in aged animals (control- Bmax = 628.0 fmol/mg protein, Kd = 0.47 nM; treated-Bmax = 747.6 fmol/mg protein, Kd = 0.84 nM). Since piracetam does not interact with muscarinic receptors, the reason for its effect expressed as the enhanced number of brain muscarinic receptors is not clear but could be the result of stimulation of phospholipid synthesis and thus would represent an indirect action of the drug.  相似文献   

11.
The binding and displacement of beta-adrenoceptor blockers, [3H]propranolol ([3H]PRP) and [3H]dihydroalprenolol ([3H]DHA), were studied on isolated rat erythrocytes, their membranes and ghosts; the binding of [3H]DHA and a M-cholinoceptor blocker, [3H]quinuclidinylbenzylate ([3H]QNB), on cerebral cortex membranes. In all experiments, ligand-receptor interactions conformed to a model of two pools of receptors in the same effector system and the binding of two ligand molecules to the receptor. The results were similar for the displacement of [3H]PRP, [3H]DHA and [3H]QNB with propranolol, dihydroalprenolol and quinuclidinyl-benzylate, respectively. The parameters of [3H]PRP to beta-adrenoceptor binding for intact erythrocytes were: Kd1 = 0.74+/-0.07 nM, Kd2 = 14.40+/-0.41 nM, B1 = 24+/-2 unit/cell, B2 = 263+/-5 unit/cell; for ghosts, Kd1 = 0.70+/-0.17 nM, Kd2 = 19.59+/-2.59 nM, B1 = 9+/-1 fmol/mg protein, B2 = 39+/-4 fmol/mg protein. Receptor affinities were similar in erythrocytes and ghosts; on the ghost membrane, the number of receptors was considerably lower (B1 = 2 unit/cell, B2 = 6 unit/cell). The parameters of [3H]QNB to M-cholinoceptor binding of the cerebral cortex membrane were the following: Kd1 = 0.43 nM, Kd2 = 2.83 nM, B1 = 712 fmol/mg, B2 = 677 fmol/mg.  相似文献   

12.
The interaction of vasoactive intestinal peptide (VIP) with isolated Leydig cells from rat testis was time- and temperature-dependent, as well as saturable and specific. Scatchard analysis suggested the presence of both high- and low-affinity binding sites with KD values of 1.7 and 43 nM, respectively, and receptor concentrations of 35 and 1394 fmol VIP bound/mg protein in mature (3- to 6-month old) rats. When considering pubertal (45-day old) rats, the affinities were similar but the binding capacities showed considerably lower values (25 and 193 fmol VIP bound/mg protein) indicating that VIP receptors are subject to developmental changes during animal maturation.  相似文献   

13.
1. Using the tritiated muscarinic receptor antagonist, quinuclidinyl benzilate ([3H]QNB) as a ligand, muscarinic cholinergic receptors have been identified and characterized in the pineal glands of cow and swamp buffalo. 2. At 25 degrees C, the specific binding reached equilibrium within 60 min and remained constant for an additional two hours. Furthermore, the specific binding was saturable, reversible and tissue dependent in nature. 3. The kinetic analyses of muscarinic cholinergic receptor sites revealed KD values of 0.423 +/- 0.01 nM and 0.218 +/- 0.01 nM, and Bmax values of 69.75 +/- 20.91 fmol/mg protein and 74.19 +/- 32.73 fmol/mg protein for the cow's- and the swamp buffalo's pineal glands, respectively. 4. The presence of muscarinic cholinergic receptor sites originating from cholinergic innervation of the pineal gland is suggested.  相似文献   

14.
Twenty-two frontal cortices from normal human foetal brains of gestational ages ranging from 16 to 40 weeks and five postnatal brains ranging from 5 to 50 years were analysed for the ontogeny of muscarinic receptors using [3H]quinuclidinyl benzilate (QNB) as the ligand. QNB binding sites were shown to be stable up to 4 1/2 months of storage at -70 degrees C. QNB binding was characterized in frontal cortices of 28-week-old foetal brains as muscarinic receptors by the following criteria: (1) it was localised mainly in particulate fraction; (2) binding was saturable at a concentration of 1.5 nM; (3) the cholinergic antagonists atropine and scopolamine competed for the binding, with IC50 values of 1 and 0.8 nM, respectively. The agonists oxotremorine, carbachol, and pilocarpine gave IC50 values of 1, 15 and 18 microM, respectively. Nicotinic receptor ligands and noncholinergic drugs could not compete for the binding. Bimolecular association and dissociation rate constants for the reversible binding are 6.23 X 10(8) M-1 X min-1 and 2.0 X 10(-2) X min-1, respectively. The equilibrium dissociation constant is 33 pM. The KD obtained by saturation binding data is 103 pM. Ontogeny of muscarinic receptors showed three distinct phases: In phase I, they appear between 16 and 18 weeks [average concentration 109 fmol/mg protein of total particulate fraction (TPF)] and slowly increase up to 20 weeks (average concentration 147 fmol/mg protein TPF). Phase II is a lag period between 20 and 24 weeks at which time receptor concentration does not change perceptibly (average concentration (67 fmol/mg protein TPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Peptide YY (PYY) receptors were solubilized from rat jejunal crypts using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of [125I-Tyr36]monoiodo-PYY ([125I]PYY) to CHAPS extracts was time-dependent and reversible. The order of potency of PYY-related peptides for inhibiting [125I]PYY binding was PYY greater than neuropeptide Y much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data indicated the presence in soluble extracts of a single class of binding sites with a Kd of 1.02 +/- 0.26 nM and a Bmax of 79 +/- 6 fmol/mg protein. Gel filtration on Sephacryl S-300 and ultracentrifugation on sucrose density gradients of soluble [125I] PYY-receptor complexes revealed a single binding component with the following hydrodynamic parameters: Stokes radius, 4.43 nm; s20,w, 2.48 S; Mr, 48,000; frictional ratio, 1.82. Solubilized PYY receptors bound specifically to concanavalin A-, wheat germ agglutinin-, and soybean-coupled Sepharose, supporting their glycoproteic nature. After cross-linking with disuccinimidyl suberate, electrophoresis of covalent [125I]PYY-receptor complexes in membranes or CHAPS extracts revealed the presence of two bands of Mr 49,000 or 28,000 whose labeling was completely abolished by 1 microM unlabeled PYY. The Mr 49,000 band probably corresponded to the Mr 48,000 PYY-receptor complex evidenced by hydrodynamic studies. Assuming one molecule of [125I]PYY (Mr 4,000) was bound per molecule of receptor, these data show that intestinal PYY receptor consists of a Mr 44,000 glycoprotein after solubilization with CHAPS. The availability of this CHAPS-soluble receptor from rat jejunum represents a major step toward the purification of this newly characterized receptor.  相似文献   

16.
Neurotensin (NT) is now classified as a brain-gut peptide in the central nervous system and gastrointestinal tract. In the present study, we characterized the NT receptors on the rat liver plasma membranes. The specific binding of [3H]NT was time dependent, reversible, and saturable. Scatchard analysis of the specific binding data yielded two classes of binding sites, a high affinity site and a low affinity site. The average maximum number of binding sites (Bmax) amounted to 13.3 +/- 1.1 fmol/mg protein at high affinity site and 122.3 +/- 21.5 fmol/mg protein at low affinity site, respectively. The dissociation constant (Kd) had values of 0.39 +/- 0.01 nM at high affinity site and 8.1 +/- 1.1 nM at low affinity site, respectively. The amount of specifically bound [3H]NT was significantly reduced in the presence of mono and divalent cations, EDTA, EGTA and a peptidase inhibitor bacitracin, NT1-13 competed with [3H]NT for its binding site with an IC50 of 0.19 nM at high affinity site (0.2 nM concentration of [3H]NT) and 0.7 nM at low affinity site (4.0 nM concentration of [3H]NT). Xenopsin, a NT analogue separated from the skin of Xenopus laevis, was equipotent (IC50 0.75 nM) with NT1-13 at 4.0 nM concentration of [3H]NT. C-terminal sequence of NT contains the structure necessary for interaction with NT binding sites whereas N-terminal sequence had no binding activity. Since NT has a hyperglysemic and a hypercholesterolemic effects in rats, these NT receptors on the rat liver plasma membranes may be involved in the hyperglycemia and/or hypercholesteroremia induced by NT.  相似文献   

17.
The binding of 125I-labelled human somatotropin (growth hormone) to a crude membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction by Triton X-100, was dependent on time, temperature and receptor concentration. At 4 degrees C a steady state was reached after 20 h, and maximum specific binding (as a percentage of total tracer added) was approx. 50% for both membrane-bound and solubilized receptors. Solubilization did not significantly affect the binding properties of the receptor at low concentrations of Triton X-100 (less than 0.05%, v/v, in the assay tube). However, at higher concentrations (approx. 0.1%, v/v), the detergent lowered the ability of some hormones, for example ovine prolactin, to displace 125I-labelled human somatotropin, but did not affect other hormones such as bovine somatotropin. Some somatogenic hormones, such as bovine somatotropin, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled human somatotropin from membrane-bound and solubilized receptor preparations. Furthermore, 85% of 125I-labelled bovine somatotropin was displaced from membrane-bound receptors by ovine prolactin, and 125I-labelled ovine prolactin was almost completely displaced by bovine somatotropin. Scatchard analysis of the binding data for human somatotropin suggested a single class of binding sites in the membrane-bound receptor preparation, with an affinity (Ka) of 1.9 X 10(9) M-1 and a capacity of 1726 fmol/mg of protein; these values were slightly increased by solubilization (Ka = 3.2 X 10(9) M-1, capacity = 2103 fmol/mg of protein). Scatchard analysis of binding to membrane-bound receptors also indicated a single class of high-affinity binding sites for bovine somatotropin (Ka = 4.8 X 10(9) M-1, capacity = 769 fmol/mg) and for ovine prolactin (Ka = 6.1 X 10(9) M-1, capacity = 187 fmol/mg).  相似文献   

18.
(-)-[3H]Nicotine was found to bind specifically to membranes of human brains obtained at autopsy. The binding was stereospecific, (-)-nicotine being 40 times more potent than (+)-nicotine in displacing labeled (-)-nicotine. Saturation binding studies revealed the presence of two binding sites with dissociation constant (KD) values of 8.1 and 86 nM, and maximum binding capacity (Bmax) values of 36 and 90 fmol/mg protein, respectively. In competition studies, nicotinic agonists were 1,000 times more potent than ganglionic, neuromuscular, and muscarinic blocking drugs in displacing labeled (-)-nicotine. IC50 values for cholinergic drugs of (-)-[3H]nicotine binding were as follows: (-)-nicotine, 0.51 nM; acetylcholine, 12.6 nM; (+)-nicotine, 19.9 nM; cytisine, 27.3 nM; and carbachol, 527 nM. IC50 values of alpha-bungarotoxin, hexamethonium, d-tubocurarine, and atropine were larger than 50 microM. (-)-[3H]Nicotine binding was highest in the nucleus basalis of Meynert and thalamus and lowest in the cerebral cortex and caudate in the brain regions tested. These results suggest that nicotinic cholinergic receptors are present in human brain and that there are regional differences in the density of these receptors.  相似文献   

19.
Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, 3H-acetylcholine (ACh), as the ligand. Specific binding of 3H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (KD) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of 3H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC50 values of cholinergic drugs for 3H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC50 values of nicotinic cholinergic agents such as nicotine, cytisine and alpha-bungarotoxin exceeded 50 microM. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic receptors in these arteries.  相似文献   

20.
M Huang  O P Rorstad 《Peptides》1987,8(3):477-485
Using a biologically active radioligand, [Tyr(125I)10]VIP, we have identified and characterized receptors for vasoactive intestinal peptide (VIP) on membranes prepared from the rat superior mesenteric artery and bovine coronary arteries. Binding was specific, saturable, reversible and dependent on time and temperature. Scatchard analysis suggested the presence of a high and a low affinity binding site in each arterial system with the following binding constants: the rat mesenteric artery, KD = 0.22 +/- 0.02 and 13.6 +/- 7.8 nM (corresponding maximum number of binding sites, RO = 606 +/- 44 fmol/mg protein and 2.1 +/- 0.2 pmol/mg protein); bovine circumflex coronary artery, KD = 0.10 +/- 0.01 and 37.8 +/- 16.1 nM (corresponding RO = 369 +/- 65 fmol/mg protein and 2.0 +/- 0.7 pmol/mg protein); bovine left and right descending coronary arteries, KD = 0.12 +/- 0.03 and 21.3 +/- 6.4 nM (corresponding RO = 472 +/- 7 fmol/mg protein and 2.2 +/- 0.3 pmol/mg protein). The arterial VIP receptors did not recognize secretin, glucagon, apamin or bovine parathyroid hormone, and had reduced affinity for PHI, PHM and growth hormone releasing factors (GRF). These recognition properties were, by and large, similar to those seen in the bovine cerebral arteries although a between-species heterogeneity of recognition function could be deduced from the differences in the competitive binding of rat and bovine vascular VIP receptors with the corresponding species-specific GRFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号