首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:观察槟榔碱对3T3-L1脂肪细胞脂代谢的影响并探讨其可能机制。方法:采用经典的"鸡尾酒"法诱导3T3-L1前脂肪细胞分化成熟,随后用不同浓度的槟榔碱(0、25、50、100 μmol/L)处理成熟脂肪细胞72 h。72 h后,四甲基偶氮唑盐(MTT)法检测细胞的活性;油红O染色观察胞浆内脂滴情况;Western blot检测脂肪酸合成酶(FAS)、甘油三酯脂肪酶(ATGL)、激素敏感性脂肪酶(HSL)蛋白表达。结果:诱导分化成熟的脂肪细胞胞浆内可见大量脂滴;MTT显示:0~100 μmol/L槟榔碱对脂肪细胞活力无显著影响;油红O染色后脂质含量测定结果表明槟榔碱能减少成熟脂肪细胞中脂质含量;Western blot结果显示:与0 μmol/L组(对照组)相比,槟榔碱可显著降低脂肪细胞内FAS的蛋白表达,增加ATGL和HSL的蛋白表达;其中以50 μmol/L组最为显著。结论:槟榔碱使脂肪细胞脂解增强,可能与降低脂质合成关键酶FAS的表达,增加脂质分解代谢关键酶ATGL和HSL的表达有关。  相似文献   

2.
李欢  冯晋川  李贵林  王讯  李明洲  刘海峰 《遗传》2018,40(9):758-766
长链非编码RNA (long non-coding RNA, lncRNA)是一类长度大于200nt、没有长开放阅读框架但往往具有mRNA结构特征的RNA,可以在转录及转录后水平参与基因的表达调控。近年来,有研究证实lncRNA对脂肪生成具有重要作用。Lnc-RAP3位于小鼠(Mus musculus)17号染色体,其表达量在小鼠脂肪细胞分化前后呈现显著差异,但其具体的生物学功能尚不清楚。为探讨lnc-RAP3在小鼠3T3-L1前脂肪细胞成脂分化中的作用,本文首先构建了lnc-RAP3的真核表达载体pcDNA3.1-RAP3,利用脂质体将pcDNA3.1-RAP3和人工合成的lnc-RAP3的siRNAs分别转染3T3-L1前脂肪细胞,并对转染后的细胞进行诱导分化,并通过油红O染色、qRT-PCR检测成脂分化相关基因表达等方法比较过表达和敲降lnc-RAP3对3T3-L1前脂肪细胞成脂分化的影响。结果显示,过表达lnc-RAP3后,细胞内脂滴聚集显著减少(P<0.05),在诱导分化第0 d、2 d和4 d时C/EBPαGlut4PPARγLPLFAS的表达水平均呈显著(P<0.05)或极显著(P<0.01)下降;敲降lnc-RAP3后,细胞内脂滴聚集显著增多(P<0.05),同时在诱导分化第0 d、2 d时PPARγLPLC/EBPαFASGlut4的表达水平呈显著(P<0.05)或极显著(P<0.01)升高。本研究结果表明,lnc-RAP3可能通过影响成脂分化相关基因的表达来抑制3T3-L1前脂肪细胞的成脂分化。  相似文献   

3.
目的:探讨辣椒碱对3T3-L1前脂肪细胞葡萄糖摄取的影响。方法:不同浓度的辣椒碱作用于3T3-L1前脂肪细胞,采用MTT测定细胞活性,GLU Test试剂盒法测定葡萄糖摄取,Western Blot法检测葡萄糖转运蛋白1(GLUT-1)表达的变化。结果:25μM辣椒碱作用72 h和50μM、100μM辣椒碱作用48 h、72 h,可显著抑制3T3-L1细胞增殖,6.25、12.5、25μM辣椒碱作用可显著促进3T3-L1细胞的葡萄糖摄入,Western Blot结果显示辣椒碱能够显著增加GLUT1蛋白表达量,差异均具有统计学意义(P0.05)。结论:低剂量辣椒碱具有降糖作用,其作用机制可能与增加GLUT-1蛋白表达有关。  相似文献   

4.
目的:利用前体脂肪细胞株3T3-L1细胞观察mTOR(mammalian target of rapamycin)信号通路中上游调控因子Rheb(Ras homolog enriched in brain)对其分化的影响。方法:利用高表达Rheb的基因重组质粒转染前体脂肪细胞株,3T3-L1。通过蛋白质免疫印迹实验鉴定质粒成功转染细胞后,诱导该细胞脂肪分化。予以分化第8天的3T3-L1细胞油红染色,并检测细胞内甘油三酯的含量。另外,我们用Western blot方法检测脂肪细胞特异性转录因子PPAR-γ(Peroxisome proliferator-activated receptor-γ)和C/EBP-α(CCAAT-enhancer-binding protein-α)的表达情况来研究Rheb在脂肪细胞分化过程中的作用。结果:我们成功构建了高表达Rheb的3T3-L1细胞株,发现高表达Rheb后可以促进脂滴的生成,油红O染色有显著区别,与对照组相比Rheb高表达组的三酰甘油含量明显升高(P0.05);C/EBP-α和PPAR-γ等脂肪细胞特异性的转录因子蛋白表达量与对照组相比也均有升高(P0.05)。结论:Rheb基因作为mTOR通路上游调控因子,可以促进脂肪细胞的分化。  相似文献   

5.
为探讨柽柳黄素对3T3-L1脂肪细胞胰岛素抵抗的影响及AMPK信号通路的作用机制,本研究利用地塞米松诱导3T3-L1脂肪细胞,建立胰岛素抵抗模型,通过给药后检测细胞对Glu的摄取量和细胞内TG的含量,并采用qRT-PCR对AMPK信号通路中相关基因进行检测,利用分子对接软件对AMPK信号通路中相关蛋白进行分子对接,进一步采用Western blot进行蛋白检测。研究结果表明,当柽柳黄素作用48 h后,高低剂量组均显著增加细胞对Glu的摄取(P<0.01),高剂量组显著降低细胞内TG含量(P<0.05);作用机制显示柽柳黄素具有显著提高AMPK(P<0.01)和降低FAS(P<0.05)基因的表达,能与FAS蛋白具有较好的分子对接,可增加P-AMPK、P-ACC、P-PKB和PPARα和抑制FAS蛋白的表达。该研究说明柽柳黄素可增强胰岛素抵抗模型3T3-L1脂肪细胞对Glu的摄取,降低TG在细胞内的含量,其作用机制可能与AMPK信号通路中相关基因和蛋白调节有关。  相似文献   

6.
建立高糖诱导胰岛素抵抗的细胞模型,研究高糖对3T3-L1脂肪细胞NF-κB p65表达及转位的影响。诱导成熟的3T3-L1脂肪细胞与5.0mmol/L的葡萄糖含或不含0.6nmol/L的胰岛素(LGIns 组与LGIns-组)或者与25.0mmol/L葡萄糖含或不含0.6nmol/L的胰岛素(HGIns 组与HGIns-组)培养18h,以2-脱氧-[3H]-D-葡萄糖摄入法观察葡萄糖的转运率,用Western印迹检测总NF-κBp65及核NF-κB p65的表达,用激光扫描共聚焦(CLSM)对NF-κB p65进行定位显示。结果显示,仅HGIns 组,即3T3-L1脂肪细胞与25.0mmol/L葡萄糖含0.6nmol/L的胰岛素培养18h后,胰岛素刺激的葡萄糖转运减少55%(P<0.01),同时Western印迹和CLSM均显示NF-κB p65核转位增加(P<0.01),但对3T3-L1脂肪细胞总NF-κB p65的表达无明显影响(P>0.05)。研究结果表明,只有在胰岛素(0.6nmol/L)存在的条件下,高糖(25.0mmol/L)才可以诱导胰岛素抵抗,其分子机制可能与其刺激NF-κB p65的核转位,调节相关基因的表达有关。  相似文献   

7.
目的:研究下调围脂滴蛋白基因(PLIN1)表达对3T3-L1细胞脂解的影响。方法:采用RNA干扰技术,构建3组阳性及1组阴性sh-PLIN1重组载体,并进行菌液PCR和DNA测序鉴定。Western blot测定PLIN1A蛋白表达,评价载体下调效果。细胞转染有效载体2天后,Bodipy 493/503染色脂滴;酶学方法测定细胞中甘油三酯和甘油含量;Western blot检测甘油三酯脂肪酶(ATGL)、激素敏感性脂肪酶(HSL)及其磷酸化蛋白(p-HSL)的表达。酶联免疫吸附法(ELISA)测定细胞中环磷酸腺苷(c AMP)和蛋白激酶A(PKA)的浓度。结果:各sh-PLIN1干扰载体构建成功,且3组阳性载体均能显著下调PLIN1A蛋白的表达(P0.05)。转染有效载体后,与阴性转染组相比,sh-PLIN1转染组细胞中脂滴减小,甘油三酯含量降低,甘油含量升高,ATGL和HSL相对表达量显著升高(P0.05),p-HSL相对表达量及c AMP、PKA的浓度无显著性差异(P0.05)。结论:下调PLIN1基因表达可加快3T3-L1细胞脂解速率,其可能通过上调ATGL和HSL的表达而实现,c AMP/PKA信号通路对其无明显调节作用。  相似文献   

8.
目的:下调脂肪特异性蛋白27(Fsp27)基因表达联合杨梅素干预,观察对3T3-L1细胞中脂质代谢的影响,并探究脂滴发生、发展变化的调控机制。方法:常规培养3T3-L1前脂肪细胞,采用"鸡尾酒"法诱导其分化为成熟脂肪细胞。脂质体法转染sh-Fsp27干扰载体,以杨梅素浓度为100μmol/L的完全培养基干预成熟脂肪细胞72h。油红O染色,观察脂滴形态及大小的变化;酶法测定细胞内甘油及甘油三酯的含量,观察细胞脂质代谢的变化。Western blot检测Fsp27、激素敏感性甘油三酯脂肪酶(HSL)、甘油三酯脂肪酶(ATGL)以及丝裂原活化蛋白激酶(MAPK)信号通路蛋白的表达。结果:1. 3T3-L1细胞诱导分化后,形态由纤维样变成圆形,并伴随有细胞体积的增大。2.与对照组相比,杨梅素组和转染组细胞中甘油三酯含量下降,甘油含量升高(P 0. 05)。与其他三组相比,联合干预组细胞中甘油三酯含量减少,甘油含量增加(P 0. 05)。3.与对照组相比,其余三组细胞内Fsp27蛋白的表达量均降低,ATGL和PPARγ的表达量升高(P 0. 05)。另外,联合干预组和杨梅素组细胞内HSL的表达量和p-p38MAPK/p38MAPK的比值均大于sh-Fsp27组和对照组(P 0. 05)。结论:1. Fsp27基因沉默与杨梅素联合干预可以更大程度地促进脂肪分解代谢。2.杨梅素可通过激活MAPK信号通路,上调HSL和ATGL的蛋白表达来发挥其促脂解的作用; sh-Fsp27干扰载体通过调节PPARγ和Fsp27蛋白的表达,增加ATGL含量来加速脂肪分解。  相似文献   

9.
MicroRNAs(miRNAs) 是一类在脂肪组织发育中发挥重要作用的小非编码RNA. 为探明miR-125a-5p在3T3-L1前体脂肪细胞中的作用,采用实时qPCR检测了miR-125a-5p在小鼠各组织及3T3-L1前体脂肪细胞分化过程中的表达|使用经化学修饰的miR-125a-5p模拟物agomir及抑制剂antagomir转染3T3-L1前体脂肪细胞,采用实时qPCR 和 Western印迹检测成脂标志基因Pparγ和aP2的表达,油红O染色观察脂肪细胞脂质积累. 结果显示,miR-125-5p在小鼠脂肪组织中高丰度表达,在3T3-L1前体脂肪细胞分化过程中表达下降.过表达miR-125a-5p,与对照组相比,成脂标志基因Pparγ和aP2在mRNA和蛋白质水平均明显下降|油红O染色及定量结果显示脂质积累减少. 抑制剂处理结果显示,Pparγ和aP2在mRNA和蛋白质水平均有不同程度上升,但油红O染色及定量结果差异不显著. 以上结果表明,miR-125a-5p在脂肪细胞分化中发挥负调控作用.  相似文献   

10.
目的 观察G蛋白偶联受体48(GPR48)、过氧化物酶体增殖体激活受体g2(PPARγ2)和CCAAT增强子结合蛋白α(C/EBPα)基因在小鼠胚胎成纤维细胞(3T3-L1)前体脂肪细胞诱导分化过程中不同时段表达水平的变化,探讨GPR48在脂肪细胞分化过程的作用。方法 体外培养3T3-L1前体脂肪细胞诱导分化为成熟脂肪细胞,在分化不同时段(第0~14天),采用Real-timePCR技术检测脂肪细胞中GPR48、PPARγ2和C/EBPα基因信使核糖核酸(mRNA)的表达水平。结果 GPR48基因在3T3-L1前体脂肪细胞诱导分化第2天和第3天表达显著上调,差异均有统计学意义(t=4.12,P=0.015;t=6.21,P=0.003),分化第6~14天与分化前表达无差异。PPARγ2表达在诱导分化后明显上调,分化第6天达高峰,第10~14天持续处于较高水平并趋于稳定,与诱导前期相比各时段间表达水平差异均有统计学意义(t在4.17~22.65间,P均〈0.01)。C/EBPα表达在诱导分化后明显上调,分化后第3天达高峰,第6~10天持续保持在较高水平,与诱导前期相比各时段表达水平差异均有统计学意义(t在4.38~13.87间,P均〈0.01),第14天趋于下调,与分化前比较无差异。GPR48基因表达高峰早于PPARγ2和C/EBPα。结论 在3T3-L1脂肪细胞分化过程中PPARγ2和C/EBPα表达变化与脂肪细胞分化、脂质积聚过程相一致。GPR48基因表达高峰早于PPARγ2和C/EBPα,可能参与了脂肪细胞分化的早期过程。  相似文献   

11.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

12.
The following study was done to assess the glucose utilizing efficiency of Indoloquinoxaline derivative incorporated keratin nanoparticles (NPs) in 3T3-L1 adipocytes. Indoloquinoxaline derivative had wide range of biological activities including antidiabetic activity. In this view, Indoloquinoxaline moiety containing N, N-dimethyl (3-fluoro-6H-indolo [3,2-b] quinoxalin-6-yl) methanamine compound was designed and synthesized, and further it is incorporated into keratin nanoparticles. The formulated NPs, drug entrapment efficiency, releasing capacity, stability, and physicochemical properties were characterized by various spectral analyzer and obtained results of characterizations were confirmed the properties of NPs. The analysis of mechanism underlying the glucose utilization of NPs was examined through molecular docking with identified target, and observed in silico study reports shown strong interaction of NPs in the binding pockets of AMPK and PTP1B. Based on the in silico screening, the formulated NPs was performed for in vitro cellular viability and glucose uptake studies on 3T3-L1 adipocytes. Interestingly, 40 μg of NPs displayed 78.2 ± 2.76% cellular viability, and no cell death was observed at lower concentrations. Further, the concentration dependent glucose utilization was observed at different concentrations of NPs in 3T3-L1 adipocytes. The results of NPs (40 μg) on glucose utilization have revealed eminent result 58.56 ± 4.54% compared to that of Metformin (10 μM) and Insulin (10 μM). The identified results clearly indicated that Indoloquinoxaline derivative incorporated keratin NPs significantly increased glucose utilization efficiency and protect the cells against the insulin resistance.  相似文献   

13.
The effect of intracellular free fatty acid (FFA) accumulation on ob gene expression in adipocytes was examined. In fully differentiated 3T3-L1 adipocytes, triacsin C, a specific acyl CoA synthetase inhibitor with a K(i) of 8.97 microM, inhibited ob gene expression by 20% at 5 x 10(-5)M. At this concentration, triacsin C induced accumulation of intracellular FFA. Treatment with both chylomicron and triacsin C reduced ob gene expression more than treatment with triacsin C alone. Treatment with 2-bromopalmitate, a poorly metabolizable palmitate analog, reduced ob gene expression by 50% at 10(-4)M, but palmitate at the same concentration had no effect. This is the first demonstration that the ob gene is downregulated by intracellular FFA accumulation, thereby raising the possibility that ob product is regulated in response to lipolysis.  相似文献   

14.
The effects of sterculic acid on cell size, adiposity, and fatty acid composition of differentiating 3T3-L1 adipocytes are correlated with stearoyl-CoA desaturase (SCD) expression (mRNA and protein levels) and enzyme activity. Fluorescence-activated cell scanning (FACS) analysis showed that adipocytes differentiated with methylisobutylxanthine, dexamethasone, and insulin (MDI) plus 100 microM sterculic acid comprised a population of predominantly large cells with reduced adiposity compared to MDI-treated cells. Although both groups had similar amounts of total fat, their fatty acid profiles were strikingly different: MDI-treated cells had high levels of the unsaturated palmitoleic (Delta(9)-16:1) and oleic (Delta(9)-18:1) acids, whereas the cells cultured with MDI plus sterculic acid accumulated palmitic (16:0) and stearic (18:0) acids together with a marked reduction in Delta(9)-16:1. Although the cells treated with MDI plus sterculic acid had similar levels of scd1 and scd2 mRNAs and antibody-detectable SCD protein as the MDI-treated cells, the SCD enzyme activity was inhibited more than 90%. The accumulation of 16:0 and 18:0, together with normal levels of fatty acid synthase (FAS) and aP2 mRNAs, shows that de novo synthesis and elongation of fatty acids, as well as cell differentiation, were not affected by sterculic acid. Because of the increase in cell size in the sterculic acid-treated cells, the insulin-stimulated 2-deoxyglucose (2-DOG) uptake was determined. Compared to MDI-treated cells, the 2-DOG uptake in the cells treated with sterculic acid was not affected. These results indicate that sterculic acid directly inhibits SCD activity, possibly by a turnover-dependent reaction, without affecting the processes required for adipocyte differentiation, scd gene expression or SCD protein translation.  相似文献   

15.
3T3-L1 adipocytes have proven difficult to transfect with plasmid-encoded cDNAs or even infect with virally-derived cDNAs. We have developed and characterized a 3T3-L1 adipocyte cell line stably expressing the truncated receptor for coxsackievirus and adenovirus receptor (CAR) for its ability to be infected with adenoviruses at a low multiplicity of infection (m.o.i.). Using green fluorescent protein driven by the cytomegalovirus promoter in adenovirus fiber type 5 we compared infection efficiencies of CAR adipocytes versus the parental 3T3-L1 adipocytes. As assessed by immunofluorescence, CAR adipocytes were infected at approximately 100-fold greater efficiency than regular 3T3-L1 adipocytes. The efficiency of transduction for the CAR adipocytes was >90% at multiplicities of infection of 50 whereas standard adipocytes were poorly transduced even at an m.o.i. of 2000. Since many investigators studying insulin action use 3T3-L1 adipocytes, we compared CAR adipocytes versus regular adipocytes and showed that the two cell lines were similar with respect to insulin stimulation of insulin receptor, MAPK, and Akt phosphorylation and basal- and insulin-stimulated glucose transport. In addition, CAR adipocytes accumulated GLUT4 and SCD1 proteins during the adipogenesis program with the same time course as regular 3T3-L1 adipocytes. Lastly, CAR adipocytes produced and secreted the adipose-specific hormone Acrp30. These data suggest 3T3-L1CARDelta1 adipocytes are virtually indistinguishable from their parental cells, but demonstrate a significant advantage with improved efficiency of adenoviral transduction for gain or deletion of function studies.  相似文献   

16.
17.
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.  相似文献   

18.
19.
The combined effect of prostaglandin F2alpha (PGF2alpha) and cAMP on glucose transport in 3T3-L1 adipocytes was examined. In cells pretreated with PGF2alpha and 8-bromo cAMP for 8 h, a synergy between these two agents on glucose uptake was found. Insulin-stimulated glucose transport, on the other hand, was only slightly affected. The synergistic effect of these two agents was suppressed in the presence of cycloheximide and actinomycin D. In concord, immunoblot and Northern blot analyses revealed that GLUT1 protein and mRNA levels were both increased in cells pretreated with both PGF2alpha and 8-bromo cAMP, greater than the additive effect of each agent alone. The synergistic action of PGF2alpha with 8-bromo cAMP to enhance glucose transport was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate, a PKC activator, the synergistic effects of PGF2alpha and 8-bromo cAMP on glucose transport and GLUT1 mRNA accumulation were both abolished. Taken together, these results indicate that PGF2alpha may act with cAMP in a synergistic way to increase glucose transport, probably through enhanced GLUT1 expression by a PKC-dependent mechanism.  相似文献   

20.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号