首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Normally the immune response is restricted to the peripheral secondary lymphoid organs. However, additional ectopic lymphoid tissue may develop at chronic sites of inflammation. In the synovium of rheumatoid arthritis patients the local production of proinflammatory cytokines seems to support the formation of a precisely structured microenvironment, which allows an antigen dependent immune response to take place. The analysis of the V-gene repertoire expressed in synovial B cells demonstrated that in the inflamed synovium a germinal centre reaction takes place. Antigen presented by a network of follicular dendritic cells may activate synovial B cells and support their differentiation into plasma cells secreting high affinity antibodies. The specificity of these antibodies remains to be determined.  相似文献   

2.
Apart from the deletion of autoreactive T cells in the thymus, various methods exist in the peripheral immune system to control specific human immune responses to self-antigens. One of these mechanisms involves regulatory T cells, of which CD4+CD25+ T cells are a major subset. Recent evidence suggests that CD4+CD25+ T cells have a role in controlling the development of autoimmune diseases in animals and in humans. The precise delineation of the function of CD4+CD25+ T cells in autoimmune inflammation is therefore of great importance for the understanding of the pathogenesis of autoimmune diseases. Moreover, the ability to control such regulatory mechanisms might provide novel therapeutic opportunities in autoimmune disorders such as rheumatoid arthritis. Here we review existing knowledge of CD4+CD25+ T cells and discuss their role in the pathogenesis of rheumatic diseases.  相似文献   

3.
4.
JS Park  MK Park  SY Lee  HJ Oh  MA Lim  WT Cho  EK Kim  JH Ju  YW Park  SH Park  ML Cho  HY Kim 《Cytokine》2012,57(1):143-149
An understanding of anthrax toxins on the emerging immune system and blood production are significant to medicine. This study examined the effects of anthrax toxin on hematopoiesis and determined roles for cytokines. Anthrax holotoxin toxin is three components: protective antigen (PA) binds to the target cell and mediates the entry of lethal factor (LF) and edema factor (EF). Anthrax toxin dramatically inhibits signaling in immune cells. We first identified the cell subsets that interacted with the protective antigen (PA) and then studied the effects on hematopoietic progenitors in clonogenic assays: granulocytic-monocytic (CFU-GM) and late erythroid (CFU-E). Multi-color immunofluorescence with FITC-PA indicated its interaction with early and late myeloid cells. Clonogenic assays, in the presence or absence of holotoxin and individual toxin proteins resulted in significant suppression by hologenic toxic alone, despite the presence of growth-promoting cytokines. Antibodies to anthrax receptor (ATR1) reversed the suppressive effects, indicating specificity. Monomeric proteins showed different effects on myeloid and erythroid progenitors. Suppression was not due to cell death, based on undetectable active caspase 3. Cytokine array analyses with supernatants from toxin-stimulated stroma showed an increase in the hematopoietic suppressor, MIP-1α. This finding, in addition to our previous studies, showing an increase in IL-10, suggested indirect roles for cytokines in toxin-mediated hematopoietic suppression. The chemokine, SDF-1α was increased. Since SDF-1 is involved in the mobilization of hematopoietic cells, it is likely that anthrax holotoxin could induce cell exit from BM. In summary, anthrax holotoxin, but not individual toxins, exerted hematopoietic effects on myeloid and erythroid progenitors via specific receptor, partly through the induction of cytokines.  相似文献   

5.
B lymphocytes play several critical roles in the pathogenesis of rheumatoid arthritis. They are the source of the rheumatoid factors and anticitrullinated protein antibodies, which contribute to immune complex formation and complement activation in the joints. B cells are also very efficient antigen-presenting cells, and can contribute to T cell activation through expression of costimulatory molecules. B cells both respond to and produce the chemokines and cytokines that promote leukocyte infiltration into the joints, formation of ectopic lymphoid structures, angiogenesis, and synovial hyperplasia. The success of B cell depletion therapy in rheumatoid arthritis may depend on disruption of all these diverse functions.  相似文献   

6.
7.
Interleukin (IL-)17 is a T cell-derived pro-inflammatory cytokine produced by RA synovium. We studied the role of IL-17 in the synovium cytokine network to determine whether it can influence the inflammatory and destructive pattern characteristic of RA. Herein, we investigated whether the production and action of MMP-1 and its inhibitor TIMP-1 could be modulated by IL-17 in the presence of pro-inflammatory cytokine (IL-1) and anti-inflammatory cytokines (IL-4, IL-13, IL-10). The effect of the blockade of endogenous IL-17 on the secretion of MMP-1 and TIMP-1 by RA synovium and matrix destruction was also studied. IL-17 increased the spontaneous production of MMP-1 by synoviocytes five-fold. IL-1 was more potent since it increased MMP-1 production nine-fold. Addition of IL-4, IL-13 and IL-10 to synoviocyte cultures reduced the spontaneous production of MMP-1 and induced TIMP-1 production by synoviocytes stimulated with IL-17 or/and IL-1beta. In the presence of anti-IL-17 blocking mAb, MMP-1 production and collagenase activity by RA synovium was reduced by 50% and associated with a 50% reduction in type I collagen C-telopeptide fragments (CTX) released in the supernatants, demonstrating the direct contribution of IL-17 in destruction. IL-17 and its producing T cells appear to contribute to the inflammatory process involved in the rheumatoid lesion.  相似文献   

8.
9.
Pathogenic bone erosion is often associated with inflammation. The destructive bone erosion that is often seen in rheumatoid arthritis is probably due to the close proximity of inflamed tissues to bone. Over the past decade, major advances have been made in our understanding of the factors that are crucial in regulating osteoclast bone resorption. It is not surprising that these factors are expressed by inflammatory cells that are present in the rheumatoid joint. It now appears that we can add neutrophils to the list of inflammatory cells found in the inflamed rheumatoid joint that express factors that regulate bone erosion.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

11.
Zhang C  Zhang J  Yang B  Wu C 《Cytokine》2008,42(3):345-352
Recent evidence from several studies indicated that IL-17-producing Th17 cells can represent the key effector cells in the induction and development of autoimmune disorders. Cyclosporine A (CsA) is a commonly used immunosuppressant to treat lots of autoimmune diseases including rheumatoid arthritis (RA). Here, we demonstrated that PBMCs and purified CD4+ T cells from healthy individuals and patients with RA could be induced to produce large amounts of IL-17 after stimulation with anti-CD3 plus anti-CD28 mAbs. Phenotypic analysis indicated that the majority of IL-17-producing cells were Th17 cells with memory phenotype. The addition of CsA into cell cultures significantly inhibited the IL-17 production by Th17 cells at protein and at mRNA levels. Compared to the PBMCs from normal individuals, PBMCs from the patients with RA produced higher levels of IL-17 that was also significantly inhibited by CsA both at protein and at mRNA levels. The mechanism might be the effect of CsA on the T cells activation because the expression of CD69 and CD25 molecules on T cells was markedly reduced in the presence of CsA. Taken together, these results demonstrated that CsA suppressed the IL-17 production and inhibited the Th17 cells differentiation from both healthy individuals and patients with RA.  相似文献   

12.

Introduction  

In a murine model, interleukin (IL)-17 plays a critical role in the pathogenesis of arthritis. There are controversies, however, regarding whether IL-17 is a proinflammatory mediator in rheumatoid arthritis (RA). We previously established an ex vivo cellular model using synovial tissue (ST)-derived inflammatory cells, which reproduced pannus-like tissue growth and osteoclastic activity in vitro. Using this model, we investigated the effects of IL-17 on pannus growth and osteoclastogenesis in RA.  相似文献   

13.

Introduction  

Mast cells have been implicated to play a functional role in arthritis, especially in autoantibody-positive disease. Among the cytokines involved in rheumatoid arthritis (RA), IL-17 is an important inflammatory mediator. Recent data suggest that the synovial mast cell is a main producer of IL-17, although T cells have also been implicated as prominent IL-17 producers as well. We aimed to identify IL-17 expression by mast cells and T cells in synovium of arthritis patients.  相似文献   

14.
There is significant evidence arising from experimental models that autoantibodies play a key role in the pathogenesis of inflammatory arthritis. In addition to autoantibody production, B cells efficiently present antigen to T cells, produce soluble factors, including cytokines and chemokines, and form B cell aggregates in the target organ of rheumatoid arthritis. In this review we analyze the multifaceted role that B cells play in the pathogenesis of rheumatoid arthritis and discuss how this information can be used to guide more specific targeting of B cells for the therapy of this disease.  相似文献   

15.
A hallmark of T cell-mediated autoimmunity is the persistence of autoreactive T cells. However, it remains to elucidate the manner in which synovial T cells are sustained in patients with rheumatoid arthritis (RA). We found that dendritic cells (DC) and tissues from the synovial joints of RA patients expressed higher levels of IDO than DC from healthy donors. Interestingly, T cells derived from the joint synovial fluid (SF) of RA patients proliferated in response to either autologous or allogeneic IDO-positive DC, an outcome that was not affected by the addition of IDO inhibitor 1-methyl-D-tryptophan (1-MT). In contrast, addition of 1-MT to the culture stimulated with allogeneic or autologous IDO-positive DC significantly enhanced the proliferation of T cells derived from peripheral blood of healthy donors or from peripheral blood of RA patients. Furthermore, we found that functionally active tryptophanyl-tRNA-synthetase (TTS) was significantly elevated in T cells derived from the SF of RA patients, leading to enhanced storage of tryptophan in T cells and to subsequent resistance to IDO-mediated deprivation of tryptophan. The RA SF enhancement of TTS expression in T cells was blocked by mAb to IFN-gamma and TNF-alpha. These results suggest that the resistance of T cells to IDO-mediated deprivation of tryptophan represents a mechanism by which autoreactive T cells are sustained in vivo in RA patients. Specifically, blocking of the up-regulation of TTS expression in T cells presents an avenue for development of a novel therapeutic approach to treatment of RA.  相似文献   

16.
Dendritic cells are the major antigen-presenting and antigen-priming cells of the immune system. We review the antigen-presenting and proinflammatory roles played by dendritic cells in the initiation of rheumatoid arthritis (RA) and atherosclerosis, which complicates RA. Various signals that promote the activation of NF-κB and the secretion of TNF and IL-1 drive the maturation of dendritic cells to prime self-specific responses, and drive the perpetuation of synovial inflammation. These signals may include genetic factors, infection, cigarette smoking, immunostimulatory DNA and oxidized low-density lipoprotein, with major involvement of autoantibodies. We propose that the pathogenesis of RA and atherosclerosis is intimately linked, with the vascular disease of RA driven by similar and simultaneous triggers to NF-κB.  相似文献   

17.
The efficacy of B-cell depletion therapy in rheumatoid arthritis (RA) has led to a renewed interest in B cells and their products and the role they play in the pathogenesis of the disease. Agents blocking tumour necrosis factor (TNF) are also very effective in the treatment of RA. It has long been known that the use of anti-TNF therapy can be associated with development of anti-nuclear and anti-double-stranded DNA antibodies and, more rarely, a lupus-like syndrome. Recently, studies have been published investigating further possible effects of anti-TNF agents on B cells and whether these could contribute to their effectiveness in RA.  相似文献   

18.
Dendritic cells (DCs) in the rheumatoid arthritis (RA) joint mediate the immunopathological process and act as a potent antigen presenting cell. We compared the expression of co-stimulatory and adhesion molecules on DCs in RA patients versus controls with traumatic joint lesions and evalulated the correlation between the immunophenotypical presentation of DCs and the clinical status of the disease. Samples of peripheral venous blood, synovial fluid (SF) and synovial tissue (ST) were obtained from 10 patients with RA at the time of hip or knee replacement and from 9 control patients with knee arthroscopy for traumatic lesions. Clinical status was appreciated using the DAS28 score. Blood, SF and dissociated ST cell populations were separated by centrifugation and analyzed by flow cytometry. Cells phenotypes were identified using three-color flow cytometry analysis for the following receptors HLA-DR, CD80, CD83, CD86, CD11c, CD18, CD54, CD58, CD3, CD4, CD8, CD19, CD20, CD14, CD16, CD56. HLA-DR molecules, co-stimulatory receptors CD80, CD86, CD83 and adhesion molecules CD18, CD11c, CD54, CD58, were analyzed by two-color immunofluorescence microscopy on ST serial sections. In patients with active RA (DAS28>5.1) we found a highly differentiated subpopulation of DCs in the ST and SF that expressed an activated phenotype (HLA-DR, CD86+, CD80+, CD83+, CD11c+, CD54+, CD58+). No differences were found between circulating DCs from RA patients and control patients. Our data suggest an interrelationship between clinical outcome and the immunophenotypical presentation of DCs. Clinical active RA (DAS28>5.1) is associated with high incidence of activated DCs population in the ST and SF as demonstrated by expression of adhesion and co-stimulatory molecules.  相似文献   

19.
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) and the subsequent invasion by the pannus of underlying cartilage and bone necessitate an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. The formation of new blood vessels - termed 'angiogenesis' - is now recognised as a key event in the formation and maintenance of the pannus in RA. This pannus is highly vascularised, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Disruption of the formation of new blood vessels would not only prevent delivery of nutrients to the inflammatory site, but could also lead to vessel regression and possibly reversal of disease. Although many proangiogenic factors are expressed in the synovium in RA, the potent proangiogenic cytokine vascular endothelial growth factor (VEGF) has been shown to a have a central involvement in the angiogenic process in RA. The additional activity of VEGF as a vascular permeability factor may also increase oedema and hence joint swelling in RA. Several studies have shown that targeting angiogenesis in animal models of arthritis ameliorates disease. Our own study showed that inhibition of VEGF activity in murine collagen-induced arthritis, using a soluble VEGF receptor, reduced disease severity, paw swelling, and joint destruction. Although no clinical trials of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis - and especially of VEGF - appears to be a promising avenue for the future treatment of RA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号