首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Axin is a recently identified protein encoded by the fused locus in mice that is required for normal vertebrate axis formation. We have defined a 25-amino-acid sequence in axin that comprises the glycogen synthase kinase 3beta (GSK-3beta) interaction domain (GID). In contrast to full-length axin, which has been shown to antagonize Wnt signaling, the GID inhibits GSK-3beta in vivo and activates Wnt signaling. Similarly, mutants of axin lacking key regulatory domains such as the RGS domain, which is required for interaction with the adenomatous polyposis coli protein, bind and inhibit GSK-3beta in vivo, suggesting that these domains are critical for proper regulation of GSK-3beta activity. We have identified a novel self-interaction domain in axin and have shown that formation of an axin regulatory complex in vivo is critical for axis formation and GSK-3beta activity. Based on these data, we propose that the axin complex may directly regulate GSK-3beta enzymatic activity in vivo. These observations also demonstrate that alternative inhibitors of GSK-3beta can mimic the effect of lithium in developing Xenopus embryos.  相似文献   

3.

Background  

Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE). The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase). However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3) is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase), whose products are required for gluconeogenesis.  相似文献   

4.
Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3β (GSK-3β). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway.We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3β. Axil bound not only to GSK-3β but also to β-catenin, and the GSK-3β-binding site of Axil was distinct from the β-catenin-binding site. Furthermore, Axil enhanced GSK-3β-dependent phosphorylation of β-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3β-dependent phosphorylation of β-catenin, thereby inhibiting axis formation.  相似文献   

5.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

6.
Platelet agonists increase the affinity state of integrin αIIbβ3, a prerequisite for fibrinogen binding and platelet aggregation. This process may be triggered by a regulatory molecule(s) that binds to the integrin cytoplasmic tails, causing a structural change in the receptor. β3-Endonexin is a novel 111–amino acid protein that binds selectively to the β3 tail. Since β3-endonexin is present in platelets, we asked whether it can affect αIIbβ3 function. When β3-endonexin was fused to green fluorescent protein (GFP) and transfected into CHO cells, it was found in both the cytoplasm and the nucleus and could be detected on Western blots of cell lysates. PAC1, a fibrinogen-mimetic mAb, was used to monitor αIIbβ3 affinity state in transfected cells by flow cytometry. Cells transfected with GFP and αIIbβ3 bound little or no PAC1. However, those transfected with GFP/β3-endonexin and αIIbβ3 bound PAC1 specifically in an energy-dependent fashion, and they underwent fibrinogen-dependent aggregation. GFP/β3-endonexin did not affect levels of surface expression of αIIbβ3 nor did it modulate the affinity of an αIIbβ3 mutant that is defective in binding to β3-endonexin. Affinity modulation of αIIbβ3 by GFP/β3-endonexin was inhibited by coexpression of either a monomeric β3 cytoplasmic tail chimera or an activated form of H-Ras. These results demonstrate that β3-endonexin can modulate the affinity state of αIIbβ3 in a manner that is structurally specific and subject to metabolic regulation. By analogy, the adhesive function of platelets may be regulated by such protein–protein interactions at the level of the cytoplasmic tails of αIIbβ3.  相似文献   

7.
8.
Abstract: To investigate the cellular mechanisms regulating neurofilament-heavy subunit (NF-H) side-arm phosphorylation, we studied the ability of three putative neurofilament kinases, glycogen synthase kinase-3 (GSK-3)α, GSK-3β, and cyclin-dependent kinase-5 (cdk-5), to phosphorylate NF-H in transfected cells. We analysed NF-H phosphorylation by using a panel of phosphorylation-dependent antibodies and also by monitoring the electrophoretic mobility of the transfected NF-H on sodium dodecyl sulphate-polyacrylamide gel electrophoresis because this is known to be affected by side-arm phosphorylation. Our results demonstrate that whereas GSK-3α, GSK-3β, and cdk-5 will all phosphorylate NF-H, they generate different antibody reactivity profiles. GSK-3α and GSK-3β induce a partial retardation of a proportion of the transfected NF-H, but only cdk-5 alters the rate of electrophoretic migration to that of NF-H from brain. We conclude that cdk-5 and GSK-3 phosphorylate different residues or sets of residues within NF-H sidearms in cells. We further show that cdk-5 is active in both the CNS and the PNS but that this activity is not dependent on expression of its activator, p35. This suggests that there are other activators of cdk-5.  相似文献   

9.
Abstract: The side-arm domain of neurofilament heavy-chain (NF-H) is heavily phosphorylated in axons. Much of this phosphate is located within a multiphosphorylation repeat (MPR) domain situated toward the carboxy terminus of the molecule. The MPR domain contains the repeat motif KSP of which there are two broad categories, KSPXX and KSPXK. In mouse NF-H, the KSPXK repeats are situated toward the latter part of the MPR domain. We have expressed in mammalian cells fragments of mouse NF-H side-arm containing all of the MPR domain, the latter part of the MPR domain containing the KSPXK repeats, and the complementary amino-terminal part of the MPR domain, which contains the KSPXX repeats. By cotransfecting these fragments with the neurofilament kinases cyclin-dependent kinase-5 (cdk-5)/p35 and glycogen synthase kinase-3α (GSK-3α), we show that cdk-5 induces cellular phosphorylation of the KSPXK-containing fragment of NF-H. Using the transfected fragments, we also map the epitopes for several commonly utilised NF-H monoclonal antibodies and describe the effects that phosphorylation by cdk-5 and GSK-3α have on their reactivities.  相似文献   

10.
11.
12.
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.  相似文献   

13.
The αvβ3 integrin plays a fundamental role during the angiogenesis process by inhibiting endothelial cell apoptosis. However, the mechanism of inhibition is unknown. In this report, we show that integrin-mediated cell survival involves regulation of nuclear factor-kappa B (NF-κB) activity. Different extracellular matrix molecules were able to protect rat aorta- derived endothelial cells from apoptosis induced by serum withdrawal. Osteopontin and β3 integrin ligation rapidly increased NF-κB activity as measured by gel shift and reporter activity. The p65 and p50 subunits were present in the shifted complex. In contrast, collagen type I (a β1-integrin ligand) did not induce NF-κB activity. The αvβ3 integrin was most important for osteopontin-mediated NF-κB induction and survival, since adding a neutralizing anti-β3 integrin antibody blocked NF-κB activity and induced endothelial cell death when cells were plated on osteopontin. NF-κB was required for osteopontin- and vitronectin-induced survival since inhibition of NF-κB activity with nonphosphorylatable IκB completely blocked the protective effect of osteopontin and vitronectin. In contrast, NF-κB was not required for fibronectin, laminin, and collagen type I–induced survival. Activation of NF-κB by osteopontin depended on the small GTP-binding protein Ras and the tyrosine kinase Src, since NF-κB reporter activity was inhibited by Ras and Src dominant-negative mutants. In contrast, inhibition of MEK and PI3-kinase did not affect osteopontin-induced NF-κB activation. These studies identify NF-κB as an important signaling molecule in αvβ3 integrin-mediated endothelial cell survival.  相似文献   

14.
Mice deficient in hepatocyte nuclear factor 1 alpha (HNF-1α) were produced by use of the Cre-loxP recombination system. HNF-1α-null mice are viable but sterile and exhibit a phenotype reminiscent of both Laron-type dwarfism and non-insulin-dependent diabetes mellitus (NIDDM). In contrast to an earlier HNF-1α-null mouse line that had been produced by use of standard gene disruption methodology (M. Pontoglio, J. Barra, M. Hadchouel, A. Doyen, C. Kress, J. P. Bach, C. Babinet, and M. Yaniv, Cell 84:575–585, 1996), these mice exhibited no increased mortality and only minimal renal dysfunction during the first 6 months of development. Both dwarfism and NIDDM are most likely due to the loss of expression of insulin-like growth factor I (IGF-I) and lower levels of insulin, resulting in stunted growth and elevated serum glucose levels, respectively. These results confirm the functional significance of the HNF-1α regulatory elements that had previously been shown to reside in the promoter regions of both the IGF-I and the insulin genes.  相似文献   

15.
The purpose of this study was to examine whether glycogen synthase kinase-3 (GSK-3) is involved in colchicine-induced cell death in PC12 cells by using GSK inhibitors. Colchicine increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. GSK-3 inhibitors such as alsterpaullone, SB216763, and AR-A014418 prevented colchicine-induced cell death and caspase-3 activation. These results suggest that colchicine induces caspase-dependent apoptotic cell death and that GSK-3 activation is involved in cell death in PC12 cells.  相似文献   

16.
1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.  相似文献   

17.
Some microorganisms can transform methyl ricinoleate into γ-decalactone, a valuable aroma compound, but yields of the bioconversion are low due to (i) incomplete conversion of ricinoleate (C18) to the C10 precursor of γ-decalactone, (ii) accumulation of other lactones (3-hydroxy-γ-decalactone and 2- and 3-decen-4-olide), and (iii) γ-decalactone reconsumption. We evaluated acyl coenzyme A (acyl-CoA) oxidase activity (encoded by the POX1 through POX5 genes) in Yarrowia lipolytica in lactone accumulation and γ-decalactone reconsumption in POX mutants. Mutants with no acyl-CoA oxidase activity could not reconsume γ-decalactone, and mutants with a disruption of pox3, which encodes the short-chain acyl-CoA oxidase, reconsumed it more slowly. 3-Hydroxy-γ-decalactone accumulation during transformation of methyl ricinoleate suggests that, in wild-type strains, β-oxidation is controlled by 3-hydroxyacyl-CoA dehydrogenase. In mutants with low acyl-CoA oxidase activity, however, the acyl-CoA oxidase controls the β-oxidation flux. We also identified mutant strains that produced 26 times more γ-decalactone than the wild-type parents.  相似文献   

18.
DNA from individuals heterozygous for (G)gamma(deltabeta)(o) thalassaemia has been studied by restriction endonuclease analysis. The results reveal a new molecular defect associated with this condition. A total of three defects is now responsible for the one single phenotype, thereby emphasising the complex relationship between genotype and phenotype among the disorders of beta-like globin synthesis in man.  相似文献   

19.
The assembly in living cells of heterotrimeric guanine nucleotide binding proteins from their constituent α, β, and γ subunits is a complex process, compounded by the multiplicity of the genes that encode them, and the diversity of receptors and effectors with which they interact. Monoclonal anti-β antibodies (ARC5 and ARC9), raised against immunoaffinity purified βγ complexes, recognize β subunits when not associated with γ and can thus be used to monitor assembly of βγ complexes. Complex formation starts immediately after synthesis and is complete within 30 min. Assembly occurs predominantly in the cytosol, and association of βγ complexes with the plasma membrane fraction starts between 15–30 min of chase. Three pools of β subunits can be distinguished based on their association with γ subunits, their localization, and their detergent solubility. Association of β and α subunits with detergent-insoluble domains occurs within 1 min of chase, and increases to reach a plateau of near complete detergent resistance within 30 min of chase. Brefeldin A treatment does not interfere with delivery of βγ subunits to detergent-insoluble domains, suggesting that assembly of G protein subunits with their receptors occurs distally from the BFA-imposed block of intracellular membrane trafficking and may occur directly at the plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号