首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

2.
Integrins, especially integrin alpha vbeta3, are attractive receptors for vascular targeting strategies. Recently, a divalent RGD peptidomimetic, E-[c(RGDfK)2], has been described that demonstrates increased uptake in human ovarian carcinoma OVCAR-3 xenograft tumors. Inspired by these results, we set out to develop doxorubicin conjugates with E-[c(RGDfK)2] by binding two different maleimide derivatives of doxorubicin to E-[c(RGDfK)2] that was thiolated with iminothiolane. In this way, two water-soluble derivatives were obtained, E-[c(RGDfK)2]-DOXO-1 and E-[c(RGDfK)2]-DOXO-2. In E-[c(RGDfK)2]-DOXO-1, doxorubicin was bound to the peptide through a stable amide bond, and in E-[c(RGDfK)2]-DOXO-2, a MMP-2/MMP-9 cleavable octapeptide was introduced between doxorubicin and the peptide. The rationale for a MMP-2/MMP-9-cleavable linker was that MMP-2 and MMP-9 bind to integrin alpha vbeta3 and both are overexpressed in tumor vasculature. In addition, analogous control doxorubicin-containing peptides bearing c(RADfK) that does not bind to integrin alpha vbeta3 were synthesized, i.e., c(RADfK)-DOXO-1 and c(RADfK)-DOXO-2. Whereas E-[c(RGDfK) 2]-DOXO-2 was cleaved effectively by MMP-2 and in OVCAR-3 tumor homogenates releasing a doxorubicin-tetrapeptide or doxorubicin as the final cleavage product, no release of doxorubicin was observed for E-[c(RGDfK)2]-DOXO-1. Proliferation of HUVEC in the presence of MMP-2-cleavable doxorubicin-containing peptides exhibited 6- to 10-fold increased inhibition compared to the amide-linked doxorubicin-containing peptides. In addition, inhibition of HUVEC sprouting during a 24 h exposure was approximately 3-fold stronger for E-[c(RGDfK) 2]-DOXO-2 and 20-fold stronger for the reference peptide conjugate c(RADfK)-DOXO-2 than for doxorubicin alone. In vivo studies in an OVCAR-3 xenograft model demonstrated no or only moderate antitumor efficacy for either E-[c(RGDfK)2], E-[c(RGDfK)2]-DOXO-1, E-[c(RGDfK)2]-DOXO-2, or c(RADfK)-DOXO-2, even at doses of 3 x 24 mg/kg doxorubicin equivalents, compared to an improved antitumor effect for doxorubicin at 2 x 8 mg/kg.  相似文献   

3.
Zhou Y  Kim YS  Lu X  Liu S 《Bioconjugate chemistry》2012,23(3):586-595
The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (~111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ~ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.  相似文献   

4.
Jia B  Shi J  Yang Z  Xu B  Liu Z  Zhao H  Liu S  Wang F 《Bioconjugate chemistry》2006,17(4):1069-1076
This report describes the evaluation of biodistribution properties of three radiotracers, [(99m)Tc(SQ168)(EDDA)], [(99m)Tc(SQ168)(tricine)(PDA)], and [(99m)Tc(SQ168)(tricine)(TPPTS)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; EDDA = ethylenediamine-N,N'-diacetic acid; PDA = 2,5-pyridinedicarboxylic acid; TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate), and their potential to image the glioma integrin alpha(v)beta(3) expression in BALB/c nude mice bearing the U87MG human glioma xenografts. It was found that all three radiotracers were able to localize in glioma tumors with a relatively high tumor uptake and long tumor retention time by binding to the integrin alpha(v)beta(3) expressed on both tumor cells and endothelial cells of tumor neovasculature. It seems that the coligand has minimal effect on integrin alpha(v)beta(3) targeting capability of the (99m)Tc-labeled RGDfK dimer, but it has a significant impact on their biodistribution properties. For example, the complex [(99m)Tc(SQ168)(tricine)(TPPTS)] has the lowest liver uptake and the highest metabolic stability in normal BALB/c nude mice. Results from SPECT imaging studies show that the glioma tumors can be clearly visualized with all three radiotracers at 4 h postinjection. Among the three radiotracers evaluated in this study, [(99m)Tc(SQ168)(tricine)(TPPTS)] has the best imaging quality and is a promising candidate for more preclinical evaluations in the future.  相似文献   

5.
The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.  相似文献   

6.
Liu S  He Z  Hsieh WY  Kim YS  Jiang Y 《Bioconjugate chemistry》2006,17(6):1499-1507
This report describes synthesis of three new cyclic RGDfK peptide conjugates, HYNIC-PKM-SU016 (PKM = E, K and PEG4) and in vivo evaluation of the impact of PKM linkers on biodistribution characteristics of their ternary ligand complexes [99mTc(HYNIC-PKM-SU016)1(tricine)(TPPTS)] in athymic nude mice bearing the MDA-MB-435 human breast cancer xenografts. Results from biodistribution studies show that PKM linkers have minimal impact on the integrin alphavbeta3 binding capability of radiotracers. Even though they have different charges under physiological conditions, all three linkers (E, K, and PEG4) are able to reduce the uptake of 99mTc-labeled E[c(RGDfK)]2 in blood, kidneys, liver, and lungs, and increase target-to-background (T/B) ratios at >30 min postinjection. E and K may have advantages over PEG4 due to a combination of relatively low liver uptake and high tumor/liver and tumor/lung ratios of ternary ligand complexes [99mTc(HYNIC-PKM-SU016)(tricine)(TPPTS)] (PKM = E and K).  相似文献   

7.
This report describes biodistribution characteristics of three ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; L = TPPTS (trisodium triphenylphosphine-3,3',3' '-trisulfonate), ISONIC (isonicotinic acid) and PDA (2,5-pyridinedicarboxylic acid)) in athymic nude mice bearing MDA-MB-435 human breast cancer xenografts. Ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (L = TPPTS, ISONIC and PDA) were prepared and were analyzed by a reversed HPLC method. Surprisingly, coligands have little impact on log P values of their ternary ligand (99m)Tc complexes even though HPLC retention times suggest that [(99m)Tc(SQ168)(tricine)(PDA)] and [(99m)Tc(SQ168)(tricine)(ISONIC)] are more hydrophilic than [(99m)Tc(SQ168)(tricine)(TPPTS)]. The results from biodistribution studies indicated that excretion kinetics of the (99m)Tc-labeled cyclic RGDfK dimer can be modified by the choice of coligand. The fact that all three radiotracers show high tumor uptake during the 2 h study period suggests that the coligand has minimal effect on the tumor targeting capability of the (99m)Tc-labeled cyclic RGDfK dimer. Results from the blocking experiment suggest that the tumor localization of the (99m)Tc-labeled cyclic RGDfK dimer is integrin alpha(v)beta(3)-mediated. On the basis of their liver uptake and tumor/liver ratios, we believe that PDA has the advantage over TPPTS and ISONIC for the (99m)Tc-labeling of HYNIC-biomolecule conjugates.  相似文献   

8.
The bombesin (BN)/gastrin-releasing peptide (GRP) receptor is expressed in high density on the cell surface of a variety of tumors. This makes the receptors accessible as a molecular target for the detection of lesions in which they are expressed. In this study, we describe a high affinity hydrophilic (99m)Tc-labeled BN analogue, [DTPA(1), Lys(3)((99m)Tc-Hx-DADT), Tyr(4)]BN, having diethylenetriaminepentaacetic acid (DTPA), as a build-in pharmacokinetic modifier, to direct its excretion through the urinary system in order to lower abdominal background activity. In vitro binding studies using [(125)I-Tyr(4)]BN (K(d), 0.1 nM) and human prostate cancer PC-3 cell membranes showed that the inhibition constant (K(i)) of [DTPA(1), Lys(3)((99)Tc-Hx-DADT), Tyr(4)]BN was 19.9 +/- 8.0 nM. Biodistribution studies in normal mice showed fast blood clearance (0.15 +/- 0.01% ID/g, 4 h postinjection), low intestinal accumulation (9.16 +/- 2.35% ID/g, 4 h postinjection), and significant uptake in BN/GRP receptor rich tissues such as the pancreas (21.83 +/- 2.88% ID/g, 15 min postinjection). The pancreas/blood, pancreas/muscle, and pancreas/liver ratios were highest at 2 h postinjection at 23, 74, and 8.4, respectively. The uptake in the pancreas could be blocked by BN (11.96 +/- 1.17 vs 0.65 +/- 0.16% ID/g), partially blocked by neuromedin B (11.96 +/- 1.17 vs 6.66 +/- 0.51% ID/g), but not affected by somatostatin (11.96 +/- 1.17 vs 12.91 +/- 2.53% ID/g), indicating that the binding of [DTPA(1), Lys(3)((99m)Tc-Hx-DADT), Tyr(4)]BN to the receptors was specific. Scintigraphic imaging of human PC-3 prostate cancer xenografts in SCID mice gave a high target to nontarget ratio on the image. Thus, [DTPA(1), Lys(3)((99m)Tc-Hx-DADT), Tyr(4)]BN has the potential for imaging BN/GRP receptor-positive lesions.  相似文献   

9.
Integrin α(V)β(3) plays a critical role in tumor angiogenesis and metastasis. Suitably radiolabeled cyclic RGD peptides can be used for noninvasive imaging of α(V)β(3) expression. The aim of this research was to prepare a multimeric system of technetium-99m-labeled gold nanoparticles conjugated to c[RGDfK(C)] and to evaluate its biological behavior as a potential radiopharmaceutical for molecular imaging of tumor angiogenesis. Hydrazinonicotinamide-GGC (HYNIC-GGC) and c[RGDfK(C)] peptides were synthesized and conjugated to gold nanoparticles (AuNP, 20 nm) by means of spontaneous reaction of the thiol groups of cysteine. The nanoconjugate was characterized by TEM, FT-IR, UV-vis, XPS, and Raman spectroscopy. To obtain (99m)Tc-HYNIC-GGC-AuNP-c[RGDfK(C)] ((99m)Tc-AuNP-RGD), the (99m)Tc-HYNIC-GGC radiopeptide was first prepared and added to 1.5 mL of AuNP solution (1 nM) followed by c[RGDfK(C)] (10 μL, 50 μM) at 18 °C with stirring for 15 min. Radiochemical purity (RP) was determined by size-exclusion HPLC and ITLC-SG analyses. In vitro binding studies were carried out in α(V)β(3) receptor-positive C6 glioma cancer cells. Biodistribution studies were accomplished in athymic mice with C6-induced tumors with blocked and nonblocked receptors, and images were obtained using a micro-SPECT/CT. TEM and spectroscopy techniques demonstrated that AuNPs were functionalized with peptides. RP was 96 ± 2% without postlabeling purification. (99m)Tc-AuNP-RGD showed specific recognition for α(V)β(3) integrins expressed in C6 cells, and 3 h after i.p. administration in mice, the tumor uptake was 8.18 ± 0.57% ID/g. Micro-SPECT/CT images showed evident tumor uptake. (99m)Tc-AuNP-RGD demonstrates properties suitable for use as a target-specific agent for molecular imaging of tumor α(V)β(3) expression.  相似文献   

10.
A cyclic RGD peptide-conjugated block copolymer, cyclo[RGDfK(CX-)]-poly(ethylene glycol)-polylysine (c(RGDfK)-PEG-PLys), was synthesized from acetal-PEG-PLys under mild acidic conditions and spontaneously associated with plasmid DNA (pDNA) to form a polyplex micelle in aqueous solution. The cyclic RGD peptide recognizes alphavbeta3 and alphavbeta5 integrin receptors, which play a pivotal role in angiogenesis, vascular intima thickening, and the proliferation of malignant tumors. The c(RGDfK)-PEG-PLys/pDNA polyplex micelle showed a remarkably increased transfection efficiency (TE) compared to the PEG-PLys/pDNA polyplex micelle for the cultured HeLa cells possessing alphavbeta3 and alphavbeta5 integrins. On the other hand, in the transfection against the 293T cells possessing no alphavbeta3 and a few alphavbeta5 integrins, the TE of the c(RGDfK)-PEG-PLys/pDNA micelle showed no increase compared to the TE of the PEG-PLys/pDNA micelle. Flow cytometric analysis revealed a higher uptake of the c(RGDfK)-PEG-PLys/pDNA micelle than the PEG-PLys/pDNA micelle against HeLa cells, consistent with the transfection results. Furthermore, a confocal laser scanning microscopic observation revealed that the pDNA in the c(RGDfK)-PEG-PLys micelle preferentially accumulated in the perinuclear region of the HeLa cells within 3 h of incubation. No such fast and directed accumulation of pDNA to the perinuclear region was observed for the micelles without c(RGDfK) ligands. These results indicate that the increase in the TE induced by the introduction of the c(RGDfK) peptide ligand was due to an increase in cellular uptake as well as facilitated intracellular trafficking of micelles toward the perinuclear region via alphavbeta3 and alphavbeta5 integrin receptor-mediated endocytosis, suggesting that the cyclic RGD peptide-conjugated polyplex micelle has promising feasibility as a site-specifically targetable gene delivery system.  相似文献   

11.
The integrin receptor alphavbeta3 is overexpressed on the endothelial cells of growing tumors and on some tumor cells themselves. A radiolabeled alphavbeta3 antagonists belonging to the quinolin-4-one class of peptidomimetics (TA138) was previously shown to exhibit high affinity for integrin alphavbeta3 and high selectivity versus other integrin receptors. 111In-TA138 exhibited high tumor uptake in the c-neu Oncomouse mammary adenocarcinoma model and produced excellent scintigraphic images. This study describes the synthesis of eight divalent versions of TA138 and their evaluation as potential tumor radiotherapeutic agents. The two main variables in this study were the length of the spacer bridging the biotargeting moieties and the total negative charge of the molecules imparted by the cysteic acid pharmacokinetic modifiers. Receptor affinity was evaluated in a panel of integrin receptor affinity assays, and biodistribution studies using the 111In-labeled derivatives were carried out in the c-neu Oncomouse model. All divalent agents maintained the high receptor affinity and selectivity of TA138, and six of the eight 111In derivatives exhibited blood clearance that was faster than 111In-TA138 at 24 h postinjection (PI). All divalent agents exhibited tumor uptake and retention at 24 h PI that was higher than 111In-TA138. Tumor/organ ratios were improved for most of the divalent agents at 24 h PI in critical nontarget organs marrow, kidney, and liver, with the agents having intermediate-length spacers (29-43 A) showing the largest improvement. As an example, 111In-15 showed tumor uptake of 14.3% ID/g at 24 h PI and tumor/organ ratios as follows: marrow, 3.24; kidney, 7.29; liver, 8.51. A comparison of therapeutic indices for 90Y-TA138 and 177Lu-15 indicate an improved therapeutic index for the divalent agent. The implications for radiotherapeutic applications and the mechanism of this multivalent effect are discussed.  相似文献   

12.
Shi J  Jia B  Liu Z  Yang Z  Yu Z  Chen K  Chen X  Liu S  Wang F 《Bioconjugate chemistry》2008,19(6):1170-1178
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.  相似文献   

13.
In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.  相似文献   

14.
This report describes the biologic evaluations of [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)] (99mTc-3P-RGD2: 6-hydrazinonicotinyl; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid; and TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate), [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)] (99mTc-3G-RGD2: 3G-RGD2 = G3-E[G3-c(RGDfK)]2 and G3 = Gly-Gly-Gly), and 99mTcO(MAG2-3G-RGD2) (MAG2 = mercaptoacetylglycylglycyl) as radiotracers for noninvasive imaging of tumor integrin αvβ3 expression in five xenografted tumor-bearing models. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG, MDA-MB-435, A549, HT29, or PC-3 tumor xenografts. Immunochemistry was performed using the cultured primary tumor cells and xenografted tumor tissues. It was found that the radiotracer tumor uptake followed the trend U87MG > MDA-MB-435 ≈ HT29 ≈ A549 > PC-3. The total integrin β3 expression levels followed the general trend: U87MG > MDA-MB-435 ≈ A549~HT29 > PC-3. There is a linear relationship between the radiotracer injected dose per gram tumor uptake and the total integrin β3 expression levels. On the basis of these, it was concluded that radiotracer tumor uptake is contributed by integrin αvβ3 expressed on tumor cells and activated endothelial cells of the tumor neovasculature. 99mTc-3P-RGD2 has the capability to monitor integrin αvβ3 expression in a noninvasive fashion.  相似文献   

15.
Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.  相似文献   

16.
Polylysine-based chelating polymers were used for site-specific modification of anti-CEA mAb Fab' fragments via their SH group distal to the antigen-binding site of the antibody molecule. Conjugation was performed using chain-terminal (pyridyldithio)propionate or 4-(p-maleimidophenyl)butyrate moieties to form reducible (S-S) or stable (S-C) bonds between a polymer and Fab' molecule, respectively. One S-S conjugate (S-S9) and two different S-C conjugates (S-C3 and S-C9) were prepared using 3- and 9-kDa molecular weight polymers. No significant loss of immunoreactivity was observed in solid-phase immunoassay, 90-95% of 111In-labeled conjugates being bound to CEA-coated Sepharose beads. After labeling with 111In, the conjugates had a specific radioactivity of 90-120 microCi/micrograms. Injected in nude mice bearing LS 174T carcinoma, the conjugates produced different biodistribution patterns. S-S9 was practically unable to accumulate in tumor and produced very rapid blood clearance of radioactivity and high uptake of radioactivity in liver, spleen, and especially kidneys (225% ID/g 24 h postinjection). S-C3 and S-C9 produced practically the same blood clearances (much slower than that of S-S9) and significant tumor uptake (9-10% ID/g at 24 h). S-C3 gave significantly lower radioactivity in spleen, skin, and bones, and cleared more rapidly from liver and kidneys. Renal uptake for S-C3 and S-C9 was rather high (45% ID/g at 24 h), but much lower than for S-S9.  相似文献   

17.
New human Escherichia coli heat-stable peptide (ST(h)) analogues containing a DOTA chelating group were synthesized by sequential and selective formation of disulfides bonds in the peptide. This synthetic approach utilizes three orthogonal thiol-protecting groups, Trt, Acm, and t-Bu, to form three disulfide bonds by successive reactions using 2-PDS, iodine, and silyl chloride-sulfoxide systems. The DOTA-ST(h) conjugates exhibiting high guanylin/guanylate cyclase-C (GC-C) receptor binding affinities were obtained with >98% purity. In vitro competitive binding assays, employing T-84 human colon cancer cells, demonstrated the IC(50) values of <2 nM for GC-C receptor binding suggesting that the new synthetic ST(h) analogues are biologically active. In vitro stability studies of the (111)In-DOTA-Phe(19)-ST(h) conjugate incubated in human serum at 37 degrees C under 5% CO(2) atmosphere revealed that this conjugate is extremely stable with no observable decomposition at 24 h postincubation. HPLC analysis of mouse urine at 1 h pi of the (111)In-DOTA-Phe(19)-ST(h) conjugate showed only about 15% decomposition suggesting that the (111)In-DOTA-Phe(19)-ST(h) conjugate is highly stable, even under in vivo conditions. In vivo pharmacokinetic studies of the (111)In-DOTA-Phe(19)-ST(h) conjugate in T-84 human colon cancer derived xenografts in SCID mice conducted at 1 h pi showed an initial tumor uptake of 2.04 +/- 0.30% ID/g at 1 h pi with efficient clearance from the blood pool (0.23 +/- 0.14% ID/g, 1 h pi) by excretion mainly through the renal/urinary pathway (95.8 +/- 0.2% ID, 1 h pi). High tumor/blood, tumor/muscle, and tumor/liver ratios of approximately 9:1, 68:1, and 26:1, respectively, were achieved at 1 h pi The specific in vitro and in vivo uptake of the radioactivity by human colonic cancer cells highlights the potential of radiometalated-DOTA-ST(h) conjugates as diagnostic/therapeutic radiopharmaceuticals.  相似文献   

18.
The radiolabeled triplex-forming oligonucleotide (TFO) demonstrated the potential for sequence-specific DNA binding and destruction. In this study, by selecting the polypurine-polypyrimidine stretch (2950-2978) in the human N-myc gene as a target, the (111)In-labeled TFO targeting human N-myc gene (N-mycTFO(111)In) was tested for its cellular uptake and nuclear localization in vitro and in vivo. This is because the deregulated N-myc expression is strongly implicated in the pathogenesis of several important human malignancies, including breast carcinoma and neuroblastoma. N-mycTFO(111)In was bound selectively to the N-myc sequence in vitro. The total cellular uptake of TFO after the incubation of various normal and cancer cells with TFO for 24 h was 20-54.8% of the injected dose (%ID), and the nuclear localization was 6.59-30.0%ID, depending on cell lines. The highest cellular uptake was found in the human neuroblastoma SK-N-DZ (54.8%ID), human mammary ductal carcinoma T47-D (54%ID), human acute T cell leukemia Jurkat (54%ID), and multidrug-resistant human breast adenocarcinoma MCF7/TH (49.5%ID). The lowest was in the human normal mammary epithelium MCF10A (20.0%ID). The highest nuclear localization was found in MCF7/TH (30%ID) and SK-N-DZ (28.7%ID). The lowest was in MCF11A (6.59%ID). We next injected TFO into human mammary tumor-xenografted Balb/c nude mice. Tumor targeting of TFO in vivo reached its maximum peak 5 h after the intravenous injection in three types of tumor models. They are 21.0 +/- 3.23%ID per gram of tissue (%ID/g) for MCF7/TH, 7.77 +/- 2.11%ID/g for MCF7, and 4.53 +/- 1.20%ID/g for MCF10A. The TFO blood level decreased from 8.00 +/- 0.90%ID/g 15 min after the injection, to 1.30 +/- 0.30%ID/g after 19 h. The kidney TFO level increased rapidly from 5.93 +/- 0.94%ID/g after 15 min, to 25.1 +/- 5.60%ID/g after 19 h. A high TFO level (19.7-24.5%ID/g) in the liver was maintained until 19 h after the injection. Therefore, we suggest that the (111)In-labeled N-myc-targeting TFO, a promising modality for nanoexplosive gene therapy, could effectively target the nucleus of the multidrug-resistant breast carcinoma MCF7/TH in vitro and in vivo. It has approximately 130 min of half-life of blood TFO.  相似文献   

19.
The biological behavior of 111In-labeled HPD has been investigated in tumor-bearing animals. Mice mammary adenocarcinomas and 7,12-dimethylbenz(a)anthracine induced breast tumors in Sprague-Dawley female rats were clearly visualized by 111In-HPD nuclear scintigraphy. Optimal scans were obtained after a 48 h delay. In normal and tumor-bearing animals, the highest uptake of 111In-HPD 72 h post-injection was found in the liver, the spleen and the kidneys. Depending on the size and the extent of necrosis, the uptake of 111In-HPD by malignant breast tumors varied from 2.5% injected dose (ID) (range 0.14–5.3% ID) in mice to 1% ID (range 0.22–8.1% ID) in rats. Benign breast tumor uptake of 111In-HPD was less that 1%ID. No significant amount of the radiopharmaceutical was found in pulmonary abscesses and abdominal cysts (< 0.1 % ID). Scintigrams of these infectious or inflammatory lesions were normal. Malignant tumor to blood, heart and lung ratios averaged 50:1, 10:1 and 3:1 respectively. Tumor to brain ratio ranged from 72 to 444:1.  相似文献   

20.
Recombinant antibody fragments offer potential advantages over intact monoclonal antibodies in the radioimmunoscintigraphy (RIS) of solid tumors. Due to their smaller molecular size, antibody fragments have shown rapid tumor targeting and blood clearance, a more uniform tumor distribution and a lower potential to elicit a human immune response. Previously, we have expressed two genetically engineered antibody fragments, the T84.66 diabody (scFv dimer) and the T84.66 minibody (scFv-CH3 dimer), specific to carcinoembryonic antigen (CEA). When radioiodinated, both antibody fragments exhibited rapid tumor targeting and rapid blood clearance in xenografted mice. To extend and optimize their future clinical RIS utility with radiometals, these antibody fragments were conjugated with the macrocycle 1,4,7,10-tetraazacyclododecane N,N',N' ',N' "-tetraacetic acid (DOTA) and labeled with 111In. Tumor targeting and biodistribution studies were carried out in athymic mice xenografted with a human colorectal tumor cell line, LS174T. The [111In]T84.66 diabody (55 kDa) exhibited very rapid tumor targeting with 12.5 +/- 0.4% injected dose per gram (% ID g(-1) +/- standard error) at 2 h and reached a maximum of 13.3 +/- 0.9% ID g(-1) at 6 h. However, kidney uptake was observed to reached a peak of 183.5 +/- 21.0% ID g(-1) at 6 h, a result similar to that reported by others for other low molecular weight fragments labeled with radiometals. Preadministration of an oral dose of D-lysine resulted in a 59% lowering of the renal accumulation at 6 h, but was accompanied by a 31% reduction of tumor uptake to 9.2 +/- 1.2% ID g(-1). The second recombinant antibody fragment, the [111In]T84.66 minibody (80 kDa), displayed rapid tumor targeting of 14.2 +/- 6.1% ID g(-1) at 2 h, and reached a maximum activity of 24.5 +/- 6.1% ID g(-1) by 12 h. Renal uptake achieved a plateau of 12-13% ID g(-1) which cleared to 7.2% ID g(-1) at 72 h. However, hepatic uptake was elevated and reached a maximum of 26.0 +/- 1.0% ID g(-1) at 12 h in these xenograft-bearing mice. Experiments in nontumor bearing mice showed a reduction of hepatic activity at 12 h to 16.6 +/- 1.5% ID g(-1), indicative of an intrinsic hepatic accumulation of the [111In]DOTA-T84.66 minibody or metabolites. While the anti-CEA [111In]DOTA-T84.66 diabody and T84.66 minibody retain the rapid tumor targeting properties of the radioiodinated form, the normal organ accumulation (kidneys and liver, respectively) of the [111In]DOTA forms appeared problematic for RIS and RIT applications. Development of alternative blocking strategies or new metabolizable chelates are under investigation to enhance the utility of the radiometal form of these and other promising recombinant antibody fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号