首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are long-chain polyunsaturated fatty acids (PUFAs) that belong to the omega-3 group. They are essential fatty acids found in phospholipid of cell membranes. There is strong evidence that these nutrients may also favorably modulate many diseases. Primary sources of omega-3 PUFAs in the human diet are fish and fish-derived products. The fishing industry worldwide, however, is becoming unable to satisfy the growing demand for these PUFAs. A promising cost-effective alternative source of PUFAs is bacterial production. We identified 40 Antarctic marine bacterial isolates by 16S rRNA gene sequence analysis. Fifteen genera in three phyla were represented in the collection. Isolates were tested for ability to produce EPA using a method in which their ability to reduce 2,3,5-triphenyltetrazolium chloride (TTC) is determined and by gas chromatography coupled to mass spectrometry (GC–MS). All isolates could reduce TTC, and GC–MS analysis showed that four produced EPA and that six produced DHA. We show for the first time that isolates identified as Cellulophaga, Pibocella and Polaribacter can produce EPA and DHA, only DHA or only EPA, respectively. One isolate, Shewanella sp. (strain 8-5), is indicated to be a good candidate for further study to optimize growth and EPA production. In conclusion, a rapid method was tested for identification of new EPA producing strains from marine environments. New EPA and DHA producing strains were found as well as a potentially useful PUFA production strain.  相似文献   

2.
In this study we present the comparative molecular analysis of bacterial communities of the aquatic plant Lemna minor from a contaminated site (RCP) and from a laboratory culture (EPA), as well as each of these with the addition of cadmium. Plants were identified as L. minor by analysis of the rpl16 chloroplast region. Comparative bacterial community studies were based on the analyses of 16S rRNA clone libraries, each containing about 100 clones from the root surfaces of plants. Bacterial communities were compared at three phylogenetic levels of resolution. At the level of bacterial divisions, differences in diversity index scores between treatments, with and without cadmium within the same plant type (EPA or RCP), were small, indicating that cadmium had little effect. When we compared genera within the most dominant group, the β-proteobacteria, differences between unamended and cadmium-amended libraries were much larger. Bacterial diversity increased upon cadmium addition for both EPA and RCP libraries. Analyses of diversity at the phylotype level showed parallel shifts to more even communities upon cadmium addition; that is, percentage changes in diversity indices due to cadmium addition were the same for either plant type, indicating that contamination history might be independent of disturbance-induced diversity shifts. At finer phylogenetic levels of resolution, the effects of cadmium addition on bacterial communities were very noticeable. This study is a first step in understanding the role of aquatic plant-associated microbial communities in phytoremediation of heavy metals.  相似文献   

3.
Bacterial production of long chain polyunsaturated fatty acids (LC-PUFAs) is a promising biotechnological approach for the mass production of these valuable compounds, but extensive screening is currently needed to select a strain that meets industrial requirements.A method was developed for the rapid screening and isolation of eicosapentaenoic acid (EPA)-producing marine bacteria from mixed cultures using the dye 2,3,5-triphenyltetrazolium chloride (TTC). The method was first validated using two bacteria from the Shewanella genus, S. gelidimarina (known to contain EPA) and S. fidelis (known not to contain EPA), and subsequently applied to a range of bacterial samples collected from seven randomly selected New Zealand fish species.By incorporating TTC in both solid and liquid state fermentation treatments, a clear association between the reduction of TTC to the red-coloured triphenyl formazan (TF) and the presence of EPA within Gram-negative bacteria was confirmed. Incubation in 0.1% w/v TTC was optimal for colour response and cell growth in agar plates and liquid cultures. Bacteria that produce EPA reduced TTC to TF, but a number of non-EPA-producing bacteria also showed this capacity. By conducting a subsequent Gram staining, all EPA-producing strains were revealed to be G (−) rod bacteria while the non-producing ones were all G (+) cocci. The fatty acid methyl esters of the isolated bacteria that reduced TTC to TF were analysed using gas chromatography-mass spectrometry and the content of EPA was confirmed by gas chromatography.From a pool of 2.0 × 108 CFU/ml, this method allowed the rapid isolation of 16 bacteria capable of producing EPA. This new approach significantly reduces the number of samples submitted for GC analysis and therefore the time, effort and cost of screening and isolating strains of EPA-producing marine bacteria.  相似文献   

4.
Highly unsaturated fatty acids such as 20:5n3 (EPA) are both hormone precursors and cell membrane components, making them important nutrients for aquatic animals. Many animals must obtain EPA from their diets because they cannot synthesize enough EPA to meet their requirements, and algae are the main source of EPA in aquatic ecosystems. In a previous study, we detected EPA in the faeces of Danio rerio, a freshwater fish, even though the fish consumed a green algae diet that did not contain EPA. The objective of this study was to determine why EPA was detected in fish faeces. A significant positive relationship was detected between the number of heterotrophic protozoa and the concentration of EPA in the faeces, which suggests that this EPA was of protozoan origin. In addition, another experiment showed that protozoa adhered to faeces far more than the green algal diet remnants, which indicates that protozoa preferred to swarm on faeces. Furthermore, we cultured protozoa in an EPA-free medium and fed them a bacterial diet also lacking EPA, and found that Cyclidium sp. synthesized EPA de novo. The results demonstrate that protozoa produce essential fatty acids and enhance the nutritional quality of animal faeces in detritus-based food webs in freshwater ecosystems.  相似文献   

5.
To understand the effect of any biomolecules in specific metabolic pathways in humans, bioavailability and for other basic understanding, stable isotopically-labelled biomolecules (preferably deuterated) is the fundamental pre-requisite. Production of deuterated biomolecules such as, astaxanthin, β-carotene, lutein, chlorophyll-a, and eicosapentaenoic acid (EPA, 20:5n-3) by metabolic tagging have been shown in commercially important microalgae, Haematococcus pluvialis and Phaeodactylum tricornutum. These microalgae were grown in appropriate optimized medium supplemented with 25 % (v/v) deuterated water. LC–MS analysis showed a maximum of 20, 25, 23, 24, and 27 % replacement of hydrogen by deuterium atoms respectively in astaxanthin, β-carotene, lutein, chlorophyll-a, and EPA. To our knowledge, this is the first report on the production of deuterated astaxanthin, chlorophyll-a and EPA by these microalgae.  相似文献   

6.
The study of the metabolism of docosapentaenoic acid (DPA, 22:5n?3) in humans has been limited by the unavailability of pure DPA and the fact that DPA is found in combination with eicosapentaenoic acid (EPA, 20:5n?3) and docosahexaenoic acid (DHA, 22:6n?3) in natural products. In this double blind cross over study, pure DPA and EPA were incorporated in meals served to healthy female volunteers. Mass spectrometric methods were used to study the chylomicron lipidomics. Plasma chylomicronemia was significantly reduced after the meal containing DPA compared with the meal containing EPA or olive oil only. Both EPA and DPA were incorporated into chylomicron TAGs, while there was less incorporation into chylomicron phospholipids. Lipidomic analysis of the chylomicron TAGs revealed the dynamic nature of chylomicron TAGs. The main TAG species that EPA and DPA were incorporated into were EPA/18:1/18:1, DPA/18:1/16:0 and DPA/18:1/18:1. There was very limited conversion of DPA and EPA to DHA and there were no increases in EPA levels during the 5 h postprandial period after the DPA meal. In conclusion, EPA and DPA showed different metabolic fates, and DPA hindered the digestion, ingestion or incorporation into chylomicrons of the olive oil present in the meal.  相似文献   

7.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35?±?0.5 mg g?1 cell dry weight) and EPA (0.12?±?0.04 mg g?1 cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.  相似文献   

8.
Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.  相似文献   

9.
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.  相似文献   

10.
The marine microalga, Pavlova viridis, contains long-chain polyunsatured fatty acids including eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3). A full-length cDNA sequence, pvelo5, was isolated from P. viridis. From sequence alignment, the gene was homologous to fatty acyl elongases from other organisms. Heterologous expression of pvelo5 in Saccharomyces cerevisiae confirmed that it encoded a specific C20-elongase within the n-3 and n-6 pathways. Elongation activity was confined exclusively to EPA and arachidonic acid (20:4n-6). GC analysis indicated that pvelo5 could co-express with other genes for biosynthesis to reconstitute the Δ8 and Δ6 pathways. Real-time PCR results and fatty acid analysis demonstrated that long-chain polyunsatured fatty acids production by the Δ8 pathway might be more effective than that by the Δ6 pathway.  相似文献   

11.
All cis-5, 8, 11, 14, 17 eicosapentaenoic acid (EPA) is presented being evaluated for dietary prophylactic use in thrombo-embolic disorders. EPA inhibits the production of TXA2 and platelet aggregation. We here present results demonstrating that human umbilical arteries convert 14C- EPA to a substance that in aqueous solutions decomposes to 14C-δ17-6-keto-PGF1α. The conversion rate in rat aortic tissue was found substantially lower. These results in combination with earlier data indicating that EPA does not influence the conversion of arachidonic acid (AA) into PGI2 in human vascular tissue, encourage further research along the lines initiated by the findings of high EPA/AA ratio and low incidence of myocardial infarction in Greenland Eskimos.  相似文献   

12.
Eicosapentaenoic acid (EPA), a well-known member of omega-3 fatty acids, is considered to have a significant health promoting role in the human body. It is an essential fatty acid as the human body lacks the ability to produce it in vivo and must be supplemented through diet. Microbial EPA represents a potential commercial source. GC/MS analyses confirmed that bacterial isolate 717, similar to Shewanella pacifica on the basis of 16S rRNA sequencing, is a potential high EPA producer. Two types of bioreactors, a Stirred Tank Reactor (STR) and an Oscillatory Baffled Reactor (OBR), were investigated in order to choose the optimum system for EPA production. The EPA production media was optimised through the selection of media components in a Plackett–Burman (PB) design of experiment followed by a Central Composite Design (CCD) to optimise the concentration of medium components identified as significant in the Plackett–Burman experiment. The growth conditions for the bioreactor, using artificial sea water (ASW) medium, were optimised by applying Response Surface Methodology (RSM). This optimisation strategy resulted in an increase in EPA from 33 mg/l (10 mg/g biomass), representing 8% of the total fatty acids at shake flask level, to 350 mg/l (46 mg/g biomass) representing 25% of the total fatty acids at bioreactor level. During this study the main effects and the interactions between the bioreactor growth conditions were revealed and a polynomial model of EPA production was generated. Chemostat experiments were performed to test the effect of growth rate and temperature on EPA production.  相似文献   

13.
14.
The genome of Caenorhabditis elegans contains 75 full length cytochrome P450 (CYP) genes whose individual functions are largely unknown yet. We tested the hypothesis that some of them may be involved in the metabolism of eicosapentaenoic acid (EPA), the predominant polyunsaturated fatty acid of this nematode. Microsomes isolated from adult worms contained spectrally active CYP proteins and showed NADPH-CYP reductase (CPR) activities. They metabolized EPA and with lower activity also arachidonic acid (AA) to specific sets of regioisomeric epoxy- and ω-/(ω-1)-hydroxy-derivatives. 17(R),18(S)-epoxyeicosatetraenoic acid was produced as the main EPA metabolite with an enantiomeric purity of 72%. The epoxygenase and hydroxylase reactions were NADPH-dependent, required the functional expression of the CPR-encoding emb-8 gene, and were inhibited by 17-ODYA and PPOH, two compounds known to inactivate mammalian AA-metabolizing CYP isoforms. Multiple followed by single RNAi gene silencing experiments identified CYP-29A3 and CYP-33E2 as the major isoforms contributing to EPA metabolism in C. elegans. Liquid chromatography/mass spectrometry revealed that regioisomeric epoxy- and hydroxy-derivatives of EPA and AA are endogenous constituents of C. elegans. The endogenous EPA metabolite levels were increased by treating the worms with fenofibrate, which also induced the microsomal epoxygenase and hydroxylase activities. These results demonstrate for the first time that C. elegans shares with mammals the capacity to produce CYP-dependent eicosanoids and may thus facilitate future studies on the mechanisms of action of this important class of signaling molecules.  相似文献   

15.
A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV −94%, −93% and −97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (−70% vs. −83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml−1, respectively, compared to 4.5±0.9 ng ml−1 in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml−1, compared to 417±58 ng ml−1 in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.  相似文献   

16.
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 ) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.  相似文献   

17.
Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)––eicosapentaenoic acid (EPA)––has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet. Here, we hypothesize that the demand for EPA in Daphnia is size-dependent and that bigger species have a higher EPA demand. To elucidate this, a growth experiment was conducted in which at 20 °C three Daphnia taxa (small-sized D. longispina complex, medium-sized D. pulicaria, and large-bodied D. magna) were fed Synechococcus elongatus supplemented with cholesterol and increasing concentrations of EPA. In addition, fatty acid analyses of Daphnia were performed. Our results show that the saturation threshold for EPA-dependent growth increased with increasing body size. This increase in thresholds with body size may provide another mechanism contributing to the prevalence of small-bodied cladocera in warm habitats and to the midsummer decline of large cladocera in eutrophic water bodies.  相似文献   

18.
The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.  相似文献   

19.
Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.  相似文献   

20.
This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号