首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
叶黄素循环及其在光保护中的分子机理研究   总被引:9,自引:0,他引:9  
植物的生命活动离不开充足的光照 ,但是当光照过强时 ,叶片吸收的光能超过了光合电子传递所需 ,过剩的光能便会对光合器官产生潜在的危害 ,引起光合作用的光抑制或光破坏。依赖于叶黄素循环的热耗散被认为是光保护的主要途径。本文着重介绍近年来有关植物叶黄素循环在酶学方面的分子调控、它的主要功能以及依赖于叶黄素循环的热耗散在光保护中的分子机理等 ,并对需进一步研究的问题作了探讨  相似文献   

2.
植物的生命活动离不开充足的光照,但是当光照过强时,叶片吸收的光能超过了光合电子传递所需,过剩的光能便会对光合器官产生潜在的危害,引起光合作用的光抑制或光破坏.依赖于叶黄素循环的热耗散被认为是光保护的主要途径.本文着重介绍近年来有关植物叶黄素循环在酶学方面的分子调控、它的主要功能以及依赖于叶黄素循环的热耗散在光保护中的分子机理等,并对需进一步研究的问题作了探讨.  相似文献   

3.
叶黄素循环及其调控   总被引:19,自引:2,他引:17  
论述了叶黄素循环的功能及其调控,同时对叶黄素循环色素的定位、紫黄质的转化程度及程度其转化的因素进行了简要综述。  相似文献   

4.
紫黄质循环是紫黄质(V)经过中间物单环氧玉米黄质(A)形成玉米黄质(Z)的可逆转换,是光合系统聚光复合体在低光下的聚光状态与高光下的能量耗散状态之间的转换开关.叶黄素中的玉米黄质可钝化(去激发)激发三线态叶绿素(3Chl*)和激发单线态氧(1O2*),紫黄质循环可直接或间接地通过非光化学淬灭(NPQ)耗散PSⅡ天线蛋白中的过量光能.天线蛋白被认为是依赖玉米黄质(Z)耗散过量光能的部位,天线蛋白通过结合紫黄质循环组分(V,A和Z)来调节紫黄质循环.类囊体膜脂的性质和结构影响紫黄质循环组分(V,A和Z)间的转换,V的脱环氧化速率依赖于V在类囊体膜脂上侧向扩散的速率,紫黄质脱环氧化作用第一步(由V到A的转换)的速度常数是第二步(由A到Z的转换)速度常数的4~6倍.现有的结果表明,天线蛋白和类囊体膜脂是紫黄质循环最基本的调节器.该文对近年来国内外关于紫黄质循环的基本反应及其功能、紫黄质循环酶结构性质和辅因子以及天线蛋白和类囊体膜脂对紫黄质循环的调节作用及其机理等方面的研究进展进行了综述.  相似文献   

5.
应用RT-PCR方法从小麦(Triticum aestivum L.cv.Xiaoyan 54)中克隆了紫黄质脱环氧化酶(violaxanthin de-epoxidase,VDE)cDNA,预测的蛋白质序列与拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)有很高的同源性。Southern杂交结果表明,在小麦中可能存在3个拷贝的紫黄质脱环氧化酶基因。Northern杂交结果表明它在绿色叶片中特异表达,在黄化小麦幼苗变绿过程中其mRNA水平受光诱导,并且强光增加了其mRNA在成熟叶片中的表达。  相似文献   

6.
应用RT-PCR方法从小麦(Triticum aestivum L. cv.Xiaoyan 54)中克隆了紫黄质脱环氧化酶(violaxanthinde-epoxidase,VDE) cDNA,预测的蛋白质序列与拟南芥(Arabidopsis thaliana)、水稻(Oryza sati va)有很高的同源性.Southern杂交结果表明,在小麦中可能存在3个拷贝的紫黄质脱环氧化酶基因.Northern杂交结果表明它在绿色叶片中特异表达,在黄化小麦幼苗变绿过程中其mRNA水平受光诱导,并且强光增加了其mRNA在成熟叶片中的表达.  相似文献   

7.
应用RT-PCR方法从小麦(Triticum aestivum L.cv.Xiaoyan 54)中克隆了紫黄质脱环氧化酶(violaxanthinde-epoxidase,VDE)cDNA,预测的蛋白质序列与拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)有很高的同源性。Southern杂交结果表明,在小麦中可能存在3个拷贝的紫黄质脱环氧化酶基因。Northern杂交结果表明它在绿色叶片中特异表达,在黄化小麦幼苗变绿过程中其mRNA水平受光诱导,并且强光增加了其mRNA在成熟叶片中的表达。  相似文献   

8.
紫黄质脱环氧化酶是高等植物体内叶黄素循环的关键酶,它催化紫黄质脱环氧化生成花药黄质和玉米黄质,在这个过程中伴随着过剩光能的热耗散.文中主要对此酶的性质、功能、研究方法以及分子生物学等内容作了简要介绍.  相似文献   

9.
为了阐明籼稻(oryza sativa L.spp.indica)、粳稻(O.sativa L.spp.japonica)对低温强光敏感性的差异,着重研究了低温强光下水稻类囊体膜脂不饱和度与叶黄素循环的变化.随着低温强光处理时间的延长,类囊体膜脂不饱和脂肪酸含量降低,饱和脂肪酸含量增加,因而膜脂不饱和指数(IUFA)下降.同时,叶黄素循环的关键酶--紫黄质脱环氧化酶(VDE)活性降低,叶黄素循环组分中紫黄质(V)含量增加,而单环氧玉米黄质(A)和下米黄质(Z)的含量减少,表现为(A+Z)/(A+Z+V)比值下降.Arrhenius分析证明,VDE对低温和膜脂不饱和度都敏感.相关分析表明,类囊体IUFA分别与VDE活性、(A+Z)/(A +Z+V)和D1蛋白量呈显著的正相关.与粳稻9516相比,籼稻油优63类囊体膜的IUFA较低,低温下类囊体膜脂流动性和稳定性较差,VDE活性和(A+Z)/(A+Z+V)比值较低.  相似文献   

10.
植物叶黄素循环的组成、功能和调节(综述)   总被引:4,自引:0,他引:4  
对近几年来植物体内叶黄素循环的组成、功能、堇菜黄素脱环氧化酶和玉米黄素环氧化酶的结构、生化性质和调节,以及叶黄素的可转变性、定位等方面的研究进展作了综述。  相似文献   

11.
The xanthophyll cycle, its regulation and components   总被引:22,自引:0,他引:22  
During the last few years much interest has been focused on the photoprotective role of zeaxanthin. In excessive light zeaxanthin is rapidly formed in the xanthophyll cycle from violaxanthin, via the intermediate antheraxanthin, a reaction reversed in the dark. The role of zeaxanthin and the xanthophyll cycle in photoprotection, is based on fluorescence quenching measurements, and in many studies a good correlation to the amount of zeaxanthin (and antheraxanthin) has been found. Other suggested roles for the xanthophylls involve, protection against oxidative stress of lipids, participation in the blue light response, modulation of the membrane fluidity and regulation of abscisic acid synthesis. The enzyme violaxanthin de-epoxidase has recently been purified from spinach and lettuce as a 43-kDa protein. It was found as 1 molecule per 20–100 electron-transport chains. The gene has been cloned and sequenced from Lactuca sativa, Nicotiana tabacum and Arabidopsis thaliana. The transit peptide was characteristic of nuclear-encoded and lumen-localized proteins. The activity of violaxanthin de-epoxidase is controlled by the lumen pH. Thus, below pH 6.6 the enzyme binds to the thylakoid membrane. In addition ascorbate becomes protonated to ascorbic acid (pKa= 4.2) the true substrate (Km= 0.1 m M ) for the violaxanthin de-epoxidase. We present arguments for an ascorbate transporter in the thylakoid membrane. The enzyme zeaxanthin epoxidase requires FAD as a cofactor and appears to use ferredoxin rather than NADPH as a reductant. The zeaxanthin epoxidase has not been isolated but the gene has been sequenced and a functional protein of 72.5 kDa has been expressed. The xanthophyll cycle pigments are almost evenly distributed in the thylakoid membrane and at least part of the pigments appears to be free in the lipid matrix where we conclude that the conversion by violaxanthin de-epoxidase occurs.  相似文献   

12.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

13.
Physiology and xanthophyll cycle activity of Nannochloropsis gaditana   总被引:2,自引:0,他引:2  
The physiology of the violaxanthin-producing microalga Nannochloropsis gaditana is examined and the effect of environmental factors on the growth and cellular pigment content investigated in batch and continuous cultures. N. gaditana is slow-growing, with a maximum specific growth rate of 0.56 day(-1) at 23 degrees C. The xanthophyll cycle is present in this strain, but has a much lower activity than in higher plants and other species of Nannochloropsis. At 30 degrees C, under high light (1500 micromol photons m(-2) s(-1)), 33% of the violaxanthin pool was deepoxidated to antheraxanthin (76%) and zeaxanthin (24%) over 60 min. Addition of iodoacetamide dramatically affected the xanthophyll cycle activity: 50% of the violaxanthin was replaced by zeaxanthin (90%) within 30 min. This was attributed to an increase in membrane fluidity following iodoacetamide addition, resulting in a larger pool of violaxanthin available for conversion. Batch culture studies showed that a decrease in irradiance (from 880 to 70 micromol photons m(-2) s(-1)) can increase chlorophyll a and violaxanthin content by as much as 80% and 60%, respectively. Continuous cultures indicated that violaxanthin is a growth-rate-dependent product, but the violaxanthin content is less affected by dilution rate (in the range 0.12 to 0.72 day(-1)) and pH (6.8 to 7.8) than chlorophyll a. The optimum conditions for growth and violaxanthin production in continuous culture were found to occur at a dilution rate of 0.48 day(-1), a temperature of between 24 degrees C and 26 degrees C, and pH in the range 7.1 to 7.3.  相似文献   

14.
Leaf Xanthophyll content and composition in sun and shade determined by HPLC   总被引:39,自引:0,他引:39  
As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the -carotene/-carotene ratio decreased and little or no -carotene was detected in sun-grown leaves. Among shade-grown leaves the -carotene/-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96–100% for shade-grown plants and 4–53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.Abbreviations A antheraxanthin - C -carotene - C -carotene - EPS epoxidation state (V+0.5A)/(V+A+Z) - L lutein - N neoxanthin - PFD photon flux density - V violaxanthin - Z zeaxanthin C.I.W.-D.P.B. Publiation No. 1035  相似文献   

15.
Seven-day-old kidney bean and cabbage seedlings were treated with 0.1–0.3 M NaCl solutions for 3 days. Chlorophyll content decreased in NaCl-treated Phaseolus seedlings, but did not significantly decrease in Brassica seedlings. Photochemical efficiency of photosystem II at dark-adapted state was similar in both Phaseolus and Brassica. The de-epoxidation state of violaxanthin increased more than sixfold in Phaseolus but showed no significant change in Brassica seedlings during NaCl treatment under low light. Maximum de-epoxidation state of violaxanthin in vivo tested in high light (2000 μmol quanta/(m2 s) increased in salt-stressed Phaseolus but decreased in Brassica seedlings. The nonphotochemical quenching (NPQ) also increased in Phaseolus but decreased in Brassica. This suggests that xanthophyll cycle pigments influence the NPQ in both Phaseolus and Brassica, but in an opposite way. The increase in the de-epoxidation state of violaxanthin in salt-stressed Phaseolus even under low light may be considered an early light signal to protect the pigment-protein complexes from salt-stress induced photodamage. It is proposed that in salt-stressed Brassica, the de-epoxidation is retarded and/or the epoxidation is accelerated leading to the accumulation of violaxanthin and a lower de-epoxidation state. Thus, light-induced violoxanthin cycle operation largely controls the photoprotection of photosynthetic apparatus in kidney bean leaves. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 113–121. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号