首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal varicosities, isolated from the myenteric plexus of guinea pig ileum longitudinal muscle, were incubated with [3H]noradrenaline to label the contents of the noradrenergic secretory vesicles. Exposure of these varicosities to KCl, nicotine, or acetylcholine resulted in the Ca2+ -dependent release of [3H]noradrenaline. Veratridine also evoked a large efflux of [3H] from this preparation, but this release was only partially Ca2+ dependent. The alpha 2-adrenoceptor agonist, clonidine, inhibited the K+-, nicotine-, and acetylcholine-induced release of [3H]noradrenaline. Similarly, exogenously administered (-)noradrenaline was an effective inhibitor of the K+ -evoked release of [3H]noradrenaline. The alpha 2-adrenoceptor antagonist, yohimbine, antagonized the inhibitory actions of both clonidine and (-)noradrenaline on the K+ -evoked release of [3H]noradrenaline from myenteric varicosities. Nicotine, acetylcholine, KCl, and veratridine also released ATP from these guinea pig ileal myenteric varicosities. However, the evoked release of ATP was unaffected by clonidine. These results indicate that myenteric varicosities can take up and release [3H]noradrenaline and that they possess presynaptic alpha 2-adrenoceptors which, when activated, inhibit the release of [3H]noradrenaline. These receptors may play a role in modulating the release of noradrenaline in the myenteric plexus in vivo. In addition, the present results suggest that ATP and [3H]noradrenaline may not be released from the same population of secretory vesicles in neuronal varicosities isolated from guinea pig ileum longitudinal muscle.  相似文献   

2.
The effect of calcitonin gene-related peptide (CGRP) on the cholinergically mediated twitch contraction in longitudinal muscle strips of the small intestine (duodenum, jejunum, ileum) of guinea-pig, pig and man was investigated. Independently of the anatomical region, CGRP inhibited the twitch response in the different specimens of all three species by about 40% with similar IC50 values (1.5-2.4 nmol/l). Only in the guinea-pig small intestine CGRP induced a contraction of the smooth muscle which was sensitive to scopolamine and tetrodotoxin. The electrically evoked [3H]acetylcholine release from jejunal longitudinal muscle strips with myenteric plexus attached of the guinea-pig, which were incubated with [3H]choline, was concentration-dependently inhibited by CGRP. A direct relaxant effect of CGRP on smooth muscle tone of carbachol precontracted preparations was only observed in specimens of the guinea-pig. In conclusion, presynaptic inhibitory CGRP receptors on cholinergic neurones modulate the release of acetylcholine in different parts of the small intestine.  相似文献   

3.
Ca2+-dependent release of [3H] noradrenaline ([3H] NA) evoked by electrical stimulation of the isolated mouse vas deferens was subject to negative feedback modulation by idazoxan an alpha 2-adrenoceptor blocking agent. Both the resting release and that evoked by 1-phenylephrine proved to be Ca0-independent and unaffected by idazoxan. Ouabain-evoked release of [3H] acetylcholine from the myenteric plexus of ileal longitudinal muscle strips in the presence of eserine was not affected by atropine, but that evoked by electrical stimulation was enhanced. Since the release of NA or ACh by 1-phenylephrine and ouabain respectively is mainly of cytoplasmic origin, it is concluded that the release of transmitter from the cytoplasm is not subject to negative feedback modulation.  相似文献   

4.
The relative structural rigidity of enkephalin analogues characterized by the molar ellipticity data obtained from the circular dichroism spectra of peptides was correlated with the opioid agonist activities of compounds displayed in isolated, electrically stimulated longitudinal muscle strip of guinea-pig ileum and mouse vas deferens preparations. It was found that the so called μ receptors modelled by guinea-pig ileum preferred the analogues with high capacity to exist in folded form, whilst the so called δ receptors (mouse vas deferens) accepted flexible ligands as readily as rigid ones.  相似文献   

5.
Previously we have demonstrated the presence of presynaptic nicotinic acetylcholine receptors on the terminals of myenteric neurons in Auerbach's plexus of guinea-pig ileum. During these studies we observed, that the presence of hemicholinium-3, an inhibitor of the high affinity choline uptake significantly influences the contraction of the longitudinal muscle strip preparation. Our aim was to investigate the neurochemical background of this effect and quantitatively characterize the action of HC-3. We studied the effect of HC-3 on epibatidine- and electrical stimulation-evoked contraction and release of [3H]acetylcholine from the guinea-pig longitudinal muscle strip preparation. We found that in the presence of tetrodotoxin, when the contribution of somatodendritic nicotinic acetylcholine receptors to the response was prevented due to the inhibition of axonal conduction, HC-3 inhibited the epibatidine-evoked contraction and [3H]acetylcholine release in the submicromolar range (IC50 = 897 nM and IC50 = 693 nM, respectively), whereas the electrical stimulation-evoked contraction was not affected by HC-3, and the release of [3H]acetylcholine was apparently enhanced. Our data indicate that HC-3 inhibits the presynaptic nicotinic acetylcholine receptors of myenteric neurons. Since these receptors play an important role in the regulation of cholinergic neurotransmission in the enteric nervous system, the use of HC-3 in [3H]acetylcholine release experiments might bias the interpretation of data.  相似文献   

6.
The release of [3H]noradrenaline ( [3H]NA) from rabbit and human isolated pulmonary artery has been measured. Removal of external potassium ions enhanced both the resting and stimulated release of [3H]NA from the strips. On adding K+ to tissues which had been suspended in K+-free Krebs solution, the release of [3H]NA was reduced in both stimulated and unstimulated tissues. Selective inhibition of presynaptic alpha 2-adrenoceptors by yohimbine significantly potentiated the release of [3H]NA evoked by stimulation in K+-free solution. The presynaptic inhibitory effect of NA was much less pronounced when the release was enhanced by the removal of external K+. Since the activity of NA, K-ATPase may be affected by removing K+ or by adding it to tissue previously kept in K+-free solution, the results may indicate involvement of the sodium pump in NA release.  相似文献   

7.
Neurochemical and pharmacological evidence has been obtained that noradrenergic varicosities (in mouse and rat vas deferens) and cholinergic varicosities (in the Auerbach's plexus) contain heterogenous alpha2-adrenoceptors through which the release of [3H]noradrenaline and [3H]acetylcholine can be modulated. The quantitative data also support the hypothesis that different noradrenaline and xylazine sensitive alpha2-adrenoceptors are present prejunctionally in the vas deferens and Auerbach's plexus preparations. Prazosin, although it has a presynaptic inhibitory effect on alpha2-adrenoceptors of noradrenergic axon terminals, has no effect on cholinergic axon terminals. These data suggest that there are two different types of alpha2-adrenoceptors at the presynaptic axon terminals.Special Issue Dedicated to Dr. Abel Lajtha  相似文献   

8.
Because ATP is degraded to adenosine, its effect could be mediated by both P1 and P2 receptors. Hence, the actions of an ATP analogue, resistant to enzymatic breakdown (alpha, beta-methylene ATP), were studied on the resting and electrically evoked release of radioactivity from longitudinal muscle strips of guinea pig ileum, preloaded either with [3H]choline or with [3H]noradrenaline. Their effects were compared with the actions of adenosine and ATP. Although adenosine and ATP markedly decreased the [3H]acetylcholine release evoked by field stimulation, alpha,beta-methylene-ATP, a potent and selective agonist of P2x receptors, enhanced this release. However, 2-methyl-2-thio-ATP, an agonist of the P2y receptors, neither enhanced nor inhibited the [3H]-acetylcholine release. 8-Phenyltheophylline, an antagonist of P1 receptors, increased the stimulation-evoked release of acetylcholine, indicating that the release of acetylcholine is tonically controlled by endogenous adenosine via P1 receptors. When alpha,beta-methylene-ATP and 8-phenyltheophylline were added together, their potentiating effect on the acetylcholine release proved to be additive. Because alpha,beta-methylene-ATP failed to antagonize the presynaptic effect of adenosine on P1 purinoceptors, it seems very likely that its effect to enhance transmitter release is mediated via separate receptors, i.e., via P2x receptors, located on the axon terminals. Similarly, the stimulation-evoked release of [3H]noradrenaline was enhanced slightly by alpha,beta-methylene-ATP. Our results suggest that both cholinergic and noradrenergic axon terminals are equipped with P2 receptors through which the stimulation-evoked release of transmitter can be modulated by ATP in a positive manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Barbiturates have been shown to be competitive antagonists at A1 adenosine receptors in radioligand binding studies. The present study investigates the effects of pentobarbital on the A1 receptor-mediated inhibition of neurotransmitter release from rabbit hippocampal slices. The inhibition of the electrically evoked release of [3H]noradrenaline by the A1 receptor agonist (R)-N6-phenylisopropyladenosine (R-PIA) was antagonized by pentobarbital with an apparent pA2 value of 3.5. Low concentrations of pentobarbital alone altered neither basal nor evoked release of [3H]noradrenaline, whereas 1,000 microM pentobarbital enhanced the basal and reduced the evoked release. In the presence of 8-phenyltheophylline, pentobarbital (200 microM and 1,000 microM) reduced the evoked noradrenaline release. Pentobarbital also antagonized the inhibition of [3H]acetylcholine release by R-PIA. In contrast to the noradrenaline release model, the evoked release of acetylcholine was enhanced by the presence of pentobarbital (50-500 microM), an effect that was lost in the presence of 8-phenyltheophylline. These results indicate that pentobarbital, in addition to a direct inhibitory action at higher concentrations, has a facilitatory effect on neurotransmitter release by blocking presynaptic A1 adenosine receptors. The possible relevance of these findings for the excitatory effects of barbiturates is discussed.  相似文献   

10.
Rat brain cortex slices, prelabelled with [3H]noradrenaline, were superfused and exposed to electrical biphasic block pulses (1 Hz; 12 mA, 4 ms) or to the Ca2+ ionophore A 23187 (10 microM) in the presence of 1.2 mM Ca2+. Forskolin (10 microM), 8-bromo-cyclic AMP (300 microM), and dibutyryl-cyclic AMP (300 microM) facilitated both the electrically evoked and A 23187-induced [3H]noradrenaline release, whereas the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX, 300 microM) and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771, 30 microM) enhanced the electrically evoked release only. The inhibitory effects of clonidine (1 nM-1 microM) and the facilitatory effect of phentolamine (0.01-10 microM) on the electrically evoked [3H]noradrenaline release were strongly reduced in the presence of 8-bromo-cyclic AMP. Clonidine (1 microM) reduced and phentolamine (3 microM) enhanced A 23187-induced [3H]noradrenaline release, provided that the slices were simultaneously exposed to forskolin. The inhibitory effects of morphine (1 microM) and [D-Ala2-D-Leu5]enkephalin (DADLE, 0.3 microM), like that of the Ca2+ antagonist Cd2+ (15 microM), on the electrically evoked release of [3H]noradrenaline were not affected by 8-bromo-cyclic AMP. Moreover, morphine and DADLE did not inhibit A 23187-induced release in the absence or presence of forskolin. These data strongly suggest that in contrast to presynaptic mu-opioid receptors, alpha 2-adrenoceptors on noradrenergic nerve terminals are negatively coupled to adenylate cyclase and may thus reduce neurotransmitter release by inhibiting the feed-forward action of cyclic AMP on the secretion process.  相似文献   

11.
Substance P (7.5-750 nM) applied in superfusion dose-dependently released 3H from isolated strips of myenteric plexus-longitudinal muscle of the guinea-pig ileum loaded with [3H]choline. Separation of the [3H]acetylcholine and [3H]choline components of the released radioactivity revealed that in response to substance P (SP) administration only the release of [3H]acetylcholine increased above resting level. A slowly developing tachyphylaxis to the effect of SP was observed. Evidence has been obtained that the slow tachyphylaxis developed to the acetylcholine-releasing effect of SP was not due to the exhaustion of releasable acetylcholine pool. Release of acetylcholine by 150 nM SP was completely prevented by tetrodotoxin or in a Ca2+-free medium and greatly reduced in the presence of noradrenaline or the opioid receptor agonist (D-Met2,Pro5)-enkephalinamide. The effect of noradrenaline and the opioid peptide was apparently prevented by yohimbine and naloxone, respectively.  相似文献   

12.
D H Versteeg  W J Florijn 《Life sciences》1987,40(13):1237-1243
The protein kinase C activator 4 beta-phorbol 12,13-dibutyrate (PDB) enhanced the electrically stimulated release of radiolabelled noradrenaline (NA), acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) from dorsal hippocampal slices of the rat in vitro in a concentration-dependent manner. 4 alpha-Phorbol 12,13 didecanoate did not have an effect on the electrically stimulated release of any of the neuromessengers. Carbachol, which when present in the superfusion medium alone inhibited [14C]ACh release, significantly reduced the effect of PDB on the release of this neuromessenger. In the presence of either clonidine or [Leu5]enkephalin, which by themselves inhibited the electrically stimulated release of [3H]NA, the effect of PDB was significantly reduced. The enhancing effects of yohimbine and PDB on the electrically stimulated release of [3H]NA were additive. In all three cases, thus, the net effects of PDB were of a similar magnitude, whether the various compounds were present or not. Taken together, the present data suggest that the diacylglycerol/protein kinase C pathway is involved in the stimulus-evoked release of NA, ACh and 5-HT from dorsal hippocampal nerve terminals. Protein kinase C seems not to be involved in the modulation of the release of NA via presynaptic alpha 2-adrenoceptors and delta-opioid receptors and in that of ACh via presynaptic ACh receptors in that brain region.  相似文献   

13.
The role of neuropeptide tyrosine (NPY) on adrenergic neurotransmission was assessed in the rat vas deferens transmurally stimulated with square pulses of 0.15 or 15 Hz. Nanomoles of NPY inhibited the electrically-induced contractions on the prostatic half but not on the epididymal end of the ductus. NPY was at least 200-fold more potent than norepinephrine or adenosine to produce an equivalent inhibition. Complete amino acid sequence of NPY is required for full agonist activity; deletion of tyrosine at the amino terminus, i.e., NPY fragment 2-36 was 3-fold less potent than the native peptide. NPY fragment 5-36, 11-36 or 25-36 were proportionally less potent than NPY. Avian pancreatic polypeptide was inactive. The presynaptic nature of the NPY activity was established measuring the outflow of 3H-norepinephrine from the adrenergic varicosities of the vas deferens electrically stimulated. In this assay, NPY was more potent than NPY 2-36 or NPY fragment 5-36. No inhibitory action of NPY was detected in K+ depolarized tissues. The inhibitory effect of NPY on the rat vas deferens neurotransmission was not significantly modified by yohimbine, theophylline or naloxone, indicating that the effect of NPY is not due to the activation of alpha 2-adrenoceptors, adenosine receptors or opiate receptors respectively. Picrotoxin or apamin did not modify the inhibitory potency of NPY; verapamil or methoxyverapamil significantly reduced its potency. The inhibitory action of NPY is best explained through the activation of presynaptic NPY receptors that regulate norepinephrine release via a negative feedback mechanism. Structure activity studies give support to the notion of NPY receptors.  相似文献   

14.
The calcium-magnesium (Ca2+-Mg2+) interaction in the process of nicotine-induced release of [3H]noradrenaline ([3H]NA) from rat isolated vas deferens was studied. Increasing extracellular concentrations of Mg2+ caused a dose-dependent depression of release of [3H]NA by nicotine, and this inhibitory effect of Mg2+ was overcome by raising the concentration of CA2+. It is concluded that Mg2+ antagonizes the nicotine-induced increase in the Ca2+ influx into the adrenergic nerve terminals, and that nicotine acts on adrenergic neuronal membrane rather than intraneuronally to cause release of NA.  相似文献   

15.
Nitric oxide (NO) inhibits the release of acetylcholine and cholinergic contractions in the small intestine of several species, but no information is available about the mouse ileum. This study examines the effects of NO on the electrically evoked release of [3H]acetylcholine and smooth muscle contraction in myenteric plexus-longitudinal muscle preparations of wild-type mice and of neuronal NO synthase (nNOS) and endothelial NOS (eNOS) knockout mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) and the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) concentration dependently increased the evoked [3H]acetylcholine release and cholinergic contractions in preparations from wild-type mice and from eNOS knockout mice. Effects of L-NNA were specifically antagonized by L-arginine. In contrast, L-NNA and ODQ did not modify the release and contractions in preparations from nNOS knockout mice. The NO donor S-nitroso-N-acetyl-DL-penicillamine inhibited the electrically evoked release of [3H]acetylcholine and longitudinal muscle contractions in a quantitatively similar manner in wild-type preparations as well as in nNOS and eNOS knockout preparations. We conclude that endogenous NO released by electrical field stimulation tonically inhibits the release of acetylcholine. Furthermore, data suggest that nNOS and not eNOS is the enzymatic source of NO-mediating inhibition of cholinergic neurotransmission in mouse ileum.  相似文献   

16.
The binding of biologically active [3H]propionyl-NPY to rabbit aortic membranes was specific and saturable. Scatchard analysis indicated a single class of binding sites with a Kd of 1.1 nM. The rank order of potencies for displacement of [3H]propionyl-NPY binding by NPY analogs in the aorta correlated with their potencies in displacing binding in brain and their activity in inhibiting contractions of the field-stimulated rat vas deferens. However, differences were noted in the absolute or relative potencies of other related polypeptides both in regards to aorta compared to brain NPY binding and NPY binding compared to activity in the vas deferens. Collectively, the results support proposals for heterogeneity of NPY receptors.  相似文献   

17.
A number of presynaptic cholinergic parameters (high affinity [3H]choline uptake, [3H]acetylcholine synthesis, [3H]acetylcholine release, and autoinhibition of [3H]acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of [3H]acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca2+-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca2+-dependent release.  相似文献   

18.
Abstract: The accumulation of [3H]xylamine ([ring-G-3H]- N -2'-chloroethyl- N -ethyl-2-methylbenzylamine; [3H]XYL) by rabbit thoracic aorta and rat vas deferens was studied in vitro . [3H]XYL uptake in both tissues saturated at the same concentrations and displayed the same time course as that for maximal inhibition of [3H]noradrenaline ([3H]NA) accumulation by XYL. Hydrolysis of [3H]XYL or coincubation with Na2S2O3 reduced tissue accumulation of tritium by 80%. In aorta and vas deferens, about 45% and 65%, respectively, of the total [3H]XYL accumulation was blocked by 100 μmol/L desmethylimipramine (DMI), l -NA, or bretylium. In the absence of sodium ion, the uptake of [3H]XYL was reduced by approximately these same amounts. In both tissues nearly 70% of the [3H]XYL taken up was protein bound when measured as trichloroacetic acid-precipitated tritium. Of this radioactivity, the same proportion was sensitive to 100 μmol/L DMI or the absence of sodium ion as found for total tissue accumulation of [3H]XYL. Hydrolysis of [3H]XYL prior to incubation with vas deferens reduced the protein-bound tritium by more than 95%. The studies indicate that [3H]XYL interacts with NA uptake carrier in both rabbit aorta and rat vas deferens and that a substantial portion of the resulting protein-bound radioactivity is carrier-dependent.  相似文献   

19.
Neuropeptide Y (NPY)-immunoreactive nerve fibers were numerous around arteries and few around veins. NPY probably co-exists with noradrenaline in such fibers since chemical or surgical sympathectomy eliminated both NPY and noradrenaline from perivascular nerve fibers and since double staining demonstrated dopamine-beta-hydroxylase, the enzyme that catalyzes the conversion of dopamine to noradrenaline, and NPY in the same perivascular nerve fibers. Studies on isolated blood vessels indicated that NPY is not a particularly potent contractile agent in vitro. NPY greatly enhanced the adrenergically mediate contractile response to electrical stimulation and to application of adrenaline, noradrenaline or histamine, as studied in the isolated rabbit gastro-epiploic and femoral arteries. The potentiating effect of NPY on the response to electrical stimulation is probably not presynaptic since NPY affected neither the spontaneous nor the electrically evoked release of [3H]noradrenaline from perivascular sympathetic nerve fibers.  相似文献   

20.
The calcium-dependent release of [3H]dopamine ([3H]DA) elicited by field stimulation or potassium is modulated through activation of stereoselective inhibitory DA autoreceptors of the D-2 subtype that are pharmacologically different from the D-1 DA receptor subtype linked to the stimulation of adenylate cyclase (EC 4.6.1.1). The D-2 DA autoreceptors appear to be endogenously activated by DA because DA receptor antagonists such as S-sulpiride increased the stimulation-evoked release of [3H]DA. Nanomolar concentrations of norepinephrine (NE) and epinephrine (E) inhibited in a concentration-dependent manner the electrical stimulation-evoked release of [3H]DA. The inhibitory effect of these catecholamines was not modified by S-sulpiride, which, on the contrary, selectively antagonized the inhibition of [3H]DA release elicited by exogenous DA. Phentolamine or (+/-)-propranolol did not affect the release of [3H]DA from rabbit retina. The alpha antagonist phentolamine competitively antagonized the inhibitory effect of both NE and E, which suggests that these catecholamines activate alpha receptors in retina. The decrease by catecholamines of the calcium-dependent release of [3H]DA appears not to involve beta adrenoceptors because their inhibitory effect was not modified by propranolol. Under identical experimental conditions (i.e., nomifensine, 30 microM), serotonin did not modify the stimulated release of [3H]DA. In conclusion, in the rabbit retina, DA autoreceptors of the D-2 subtype appear to modulate endogenously released DA whereas inhibitory presynaptic alpha receptors might be of pharmacological importance as sites of action for retinal or blood-borne catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号