首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surprisingly little is known about the role of host factors in regulating transposition, despite the potentially deleterious rearrangements caused by the movement of transposons. An extensive mutant screen was therefore conducted to identify Escherichia coli host factors that regulate transposition. An E. coli mutant library was screened using a papillation assay that allows detection of IS903 transposition events by the formation of blue papillae on a colony. Several host mutants were identified that exhibited a unique papillation pattern: a predominant ring of papillae just inside the edge of the colony, implying that transposition was triggered within these cells based on their spatial location within the colony. These mutants were found to be in pur genes, whose products are involved in the purine biosynthetic pathway. The transposition ring phenotype was also observed with Tn552, but not Tn10, establishing that this was not unique to IS903 and that it was not an artifact of the assay. Further genetic analyses of purine biosynthetic mutants indicated that the ring of transposition was consistent with a GTP requirement for IS903 and Tn552 transposition. Together, our observations suggest that transposition occurs during late stages of colony growth and that transposition occurs inside the colony edge in response to both a gradient of exogenous purines across the colony and the developmental stage of the cells.  相似文献   

2.
3.
A transposon Tn10 vehicle was developed using a self transmissible (Tra+) plasmid pRK2013 having narrow host range ori of replication (ColEl). The construct pSA10-3 carrying Tn10 was useful in efficiently transferring transposon Tn10 from E. coli into various rhizobia. The ColEl replicon conferred suicidal property to vector in Rhizobium background where it falls to replicate stably. Thus this plasmid can be employed to cause independent insertion mutations in rhizobia by Tn10 transposition. The frequency of tetracycline resistant colonies of Rhizobium (Tn10 mutants) was approximately 105 folds higher than the spontaneous TetR mutants. Reversion frequency of these mutants was less than 10?8 indicating adequate stability of Tn10 mutations.  相似文献   

4.
5.
The aim of this study was to verify whether extremely low frequency (ELF) magnetic fields (MF) could affect transposition activity like some environmental stress factors such as heat shock or UV irradiation. Using an Escherichia coli Lac Z(-) strain transformed with a plasmid containing a Tn 10 derivative element expressing beta-galactosidase only after transposition, it was possible to determine the events of transposition evaluating the rate at which the colonies developed dark coloured papillae (Lac Z(+)). We found that those bacteria that had been exposed for a long time (58 h) to a 50 Hz low intensity MF (0.1-1 mT) gave colonies with significantly lower transposition activity compared to sham-exposed bacteria. Such reduction in transposition activity was positively correlated to the intensity of the MF, in a dose-effect manner. This phenomenon was not affected by bacterial cell proliferation, since no significant differences were observed in number, diameter and perimeter between sham-exposed and MF-exposed colonies.  相似文献   

6.
7.
The streptococcal transposon Tn917 was demonstrated to transpose in Escherichia coli from the Bacillus subtilis-E. coli shuttle plasmid pHK1207 into an F' plasmid derivative. Subsequently, a second round of transposition from the F' plasmid into pACYC184 could be readily demonstrated. These results represent the initial demonstration of the transposition of a gram-positive transposon in a gram-negative bacterium at a relatively high frequency.  相似文献   

8.
To elucidate the role of the insA reading frame in transposition of the IS1 element of the Tn9' transposon, the derivatives of plasmids pUC19::Tn9' and pUC19::IS1 have been obtained using oligonucleotide inserts of the length equal or exceeding 9 bp and equal to 10 bp. The ability of mutant variants of the Tn9' transposon and the IS1 element to form simple insertions and plasmid cointegrates was studied. To this end, experiments were performed on mobilization of the derivatives of pUC19 containing mutant variants of the IS1 element and Tn9' as well as of the plasmids pUC19::Tn9' by the conjugative plasmid pRP3.1. According to the data obtained, mutations (inserts) in the insA gene have no influence on the frequency of transposition of the IS1 element and Tn9' from the plasmid pUC19 to pRP3.1. At the same time, the frequency of transposition events of mutant variants of Tn9' from the plasmid pRP3.1 to pBR322 is more than 10 times lower in comparison with the wild type transposon. The data obtained are in accordance with the assumption that the insA gene is not essential for transposition. A hypothesis is put forward explaining the role of the insA gene product in the process of bringing together short inverted repeats of the IS1, which are the sites for the transposase to be recognized at first stages of transposition.  相似文献   

9.
DNA transposition is an important biological phenomenon that mediates genome rearrangements, inheritance of antibiotic resistance determinants, and integration of retroviral DNA. Transposition has also become a powerful tool in genetic analysis, with applications in creating insertional knockout mutations, generating gene-operon fusions to reporter functions, providing physical or genetic landmarks for the cloning of adjacent DNAs, and locating primer binding sites for DNA sequence analysis. DNA transposition studies to date usually have involved strictly in vivo approaches, in which the transposon of choice and the gene encoding the transposase responsible for catalyzing the transposition have to be introduced into the cell to be studied (microbial systems and applications are reviewed in ref. 1). However, all in vivo systems have a number of technical limitations. For instance, the transposase must be expressed in the target host, the transposon must be introduced into the host on a suicide vector, and the transposase usually is expressed in subsequent generations, resulting in potential genetic instability. A number of in vitro transposition systems (for Tn5, Tn7, Mu, Himar1, and Ty1) have been described, which bypass many limitations of in vivo systems. For this purpose, we have developed a technique for transposition that involves the formation in vitro of released Tn5 transposition complexes (TransposomesTM) followed by introduction of the complexes into the target cell of choice by electroporation. In this report, we show that this simple, robust technology can generate high-efficiency transposition in all tested bacterial species (Escherichia coli, Salmonella typhimurium, and Proteus vulgaris) We also isolated transposition events in the yeast Saccharomyces cerevisiae.  相似文献   

10.
A study was made of the transposition of the mercury resistance transposon Tn5041 which, together with the closely related toluene degradation transposon Tn4651, forms a separate group in the Tn3 family. Transposition of Tn5041 was host-dependent: the element transposed in its original host Pseudomonas sp. KHP41 but not in P. aeruginosa PAO-R and Escherichia coli K12. Transposition of Tn5041 in these strains proved to be complemented by the transposase gene (tnpA) of Tn4651. The gene region determining the host dependence of Tn5041 transposition was localized with the use of a series of hybrid (Tn5041 x Tn4651) tnpA genes. Its location in the 5'-terminal one-third of the transposase gene is consistent with the data that this region is involved in the formation of the transposition complex in transposons of the Tn3 family. As in other transposons of this family, transposition of Tn5041 occurred via cointegrate formation, suggesting its replicative mechanism. However, neither of the putative resolution proteins encoded by Tn5041 resolved the cointegrates formed during transposition or an artificial cointegrate in E. coli K12. Similar data were obtained with the mercury resistance transposons isolated from environmental Pseudomonas strains and closely related to Tn5041 (Tn5041 subgroup).  相似文献   

11.
M P Krebs  W S Reznikoff 《Gene》1988,63(2):277-285
We constructed a derivative of Tn5, Tn5 ORFlac, that is capable of creating lacZ translational fusions upon transposition. Lac- strains carrying this construct formed red papillae when plated on MacConkey-lactose media. Lac+ cells isolated from independent papillae expressed distinct beta-galactosidase fusion proteins, suggesting that the Lac+ phenotype resulted from transposition. In support of this, analysis of plasmids carrying Tn5 ORFlac prepared from these cells indicated that the Lac+ phenotypes arose as a result of intermolecular rearrangements. Furthermore, a derivative of Tn5 ORFlac that contains an ochre mutation in the transposase gene formed papillae only in a supB strain. Tn5 ORFlac is useful for obtaining mutants that affect Tn5 transposition and for creating lacZ fusions. We used the papillation phenotype to isolate a spontaneous revertant of IS50L that promotes transposition at a 3.6-fold higher rate than IS50R. The mutation altered the amino acid sequence of both transposase and inhibitor.  相似文献   

12.
13.
Homologous recombination at the bacterial transposon Tn7 donor site is stimulated 10-fold when Tn7 is activated to transpose at high frequency in RecD(-) Escherichia coli, where recombination is focused near the ends of double-chain breaks. This is observed as an increase in recombination between two lacZ heteroalleles when one copy of lacZ carries within it a Tn7 that is transposing at high frequency. This stimulation of recombination is dependent upon the presence of homology with the donor site, is independent of SOS induction, and is not due to a global stimulation of recombination. When stimulated by Tn7 transposition, the conversion events giving rise to Lac(+) recombinants occur preferentially at the site of Tn7, suggesting that transposition is stimulating gene conversion at the donor site. These results support the model that Tn7 transposition occurs by a ``cut and paste' mechanism, leaving a double-chain break at the donor site that is repaired by the host homologous recombination machinery; normally, repair would use homology in a sister chromosome to regenerate a copy of the transposon. This proposed series of events allows transposition that is nonreplicative, per se, to be effectively replicative.  相似文献   

14.
P L Sharpe  N L Craig 《The EMBO journal》1998,17(19):5822-5831
The bacterial transposon Tn7 is distinguished by its ability to insert at a high frequency into a specific site in the Escherichia coli chromosome called attTn7. Tn7 insertion into attTn7 requires four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC and TnsD. The selection of attTn7 is determined by TnsD, a sequence-specific DNA-binding protein. TnsD binds attTn7 and interacts with TnsABC, the core transposition machinery, which facilitates the insertion of Tn7 into attTn7. In this work, we report the identification of two host proteins, the ribosomal protein L29 and the acyl carrier protein (ACP), which together stimulate the binding of TnsD to attTn7. The combination of L29 and ACP also stimulates Tn7 transposition in vitro. Interestingly, mutations in L29 drastically decrease Tn7 transposition in vivo, and this effect of L29 on Tn7 transposition is specific for TnsABC+D reactions.  相似文献   

15.
Four mutations were studied which lead to increasing the frequency of transposon Tn1 translocation into different replicons. These mutations (het1, het2, het3 and het4) increase the frequency of Tn1 translocation 10-20-fold. The het1 mutation is recessive and has been localized in the 90-94.5 min region of the bacterial chromosome. The mutation effects Tn1 transposition in the presence of F plasmid only. As we have demonstrated recently, F-plasmid inhibits Tn1 transposition in Escherichia coli cells. The het1 mutation eliminates this inhibition. Unlike het2, het3 and het4 mutations, het1 is responsible for resistance to male phages f1, f2, MS2 and inhibition of conjugative transfer in F+ bacteria.  相似文献   

16.
IS1207 is the insertion most frequently found among the spontaneous mutations that abolish the activity of an Escherichia coli phage lambda cI gene integrated in the Corynebacterium Brevibacterium lactofermentum ATCC21086 genome. We examined the transposition of transposon-like structures composed of a selective kanamycin resistance gene (aph3), and one or two IS1207 sequences. One of these, the Tn5531 transposon, transposed efficiently in Corynebacterium glutamicum. A replicative and a non-replicative Tn5531 delivery vector were used in Tn5531 mutagenesis. As IS1207, transposon Tn5531 shows a high frequency of transposition and mutagenesis, and a low target specificity. These features make of Tn5531 an adequate choice for gene identification and gene tagging experiments.  相似文献   

17.
M J Casadaban  J Chou  S N Cohen 《Cell》1982,28(2):345-354
Five single base pair mutations that increase expression of the tnpA (transposase) gene of the Tn3 transposon approximately 30-fold, but which still allow the gene to be regulated, have been isolated by using a generally applicable procedure that involves distally linked lac gene fusions. The mutations, which are all located in a region controlling initiation of translation of the tnpA gene, do not affect normal repression of tnpA by the tnpR gene product, and yield up to a 9000-fold increase in tnpA protein production when combined with a tnpR mutation and placed on a high copy number plasmid. The mutation yielding the highest expression level was separated from the fused lac gene segment by homologous recombination and was found to increase the rate of transposition without altering the nature of the transposition product; in cells defective in both the E. coli recA gene and the tnpR gene of tn3, cointegrate transposition-intermediate structures occur with the overproducing--as well as with the wild-type--tnpA gene. In the presence of a functional Tn3 tnpR gene or the related transposon delta gamma, such cointegrate structures are resolved into the final products of transposition.  相似文献   

18.
Excision of the prokaryotic transposon Tn10 is a host-mediated process that occurs in the absence of recA function or any transposon-encoded functions. To determine which host functions might play a role in transposon excision, we have isolated 40 mutants of E. coli K12, designated tex, which increase the frequency of Tn10 precise excision. Three of these mutations (texA) have been shown to qualitatively alter RecBC function. We show that 21 additional tex mutations with a mutator phenotype map to five genes previously identified as components of a methylation-directed pathway for repair of base pair mismatches: uvrD, mutH, mutL, mutS and dam. Previously identified alleles of these genes also have a Tex phenotype.--Several other E. coli mutations affecting related functions have been analyzed for their effects on Tn10 excision. Other mutations affecting the frequency of spontaneous mutations (mutT, polA, ung), different excision repair pathways (uvrA, uvrB) or the state of DNA methylation (dcm) have no effect on Tn10 excision. Mutations ssb-113 and mutD5, however, do increase Tn10 excision.--The products of the mismatch correction genes probably function in a coordinated way during DNA repair in vivo. Thus, mutations in these genes might also enhance transposon excision by a single general mechanism. Alternatively, since mutations in each gene have qualitatively and quantitatively different effects on transposon excision, defects in different mismatch repair genes may enhance excision by different mechanisms.  相似文献   

19.
It was shown that IS element ISPpyl isolated earlier in the permafrost strain Psychrobacter maritimus MR29-12 has a high level of functional activity in cells of the heterologous host Escherichia coli K-12. ISPpyl can be translocated in E. coli cells by itself and mobilize adjacent genes and can also form composite transposons flanked by two copies of this element. Apart from translocations between different plasmids, the composite ISPpyl-containing transposon Tn5080a is capable of translocation from the plasmid into the E. coli chromosome with high frequency and from the chromosome into the plasmid. Among products of Tn5080a transposition into plasmid R388, simple insertions were predominantly formed together with cointegrates. Upon mobilization of adjacent genes with the use of one ISPpyl copy, only cointegrates arise.  相似文献   

20.
To enable effective use of phoA gene fusions in Legionella pneumophila, we constructed MudphoA, a derivative of the mini-Mu phage Mu dII4041, which is capable of generating gene fusions to the Escherichia coli alkaline phosphatase gene (EC 3.1.3.1). Although an existing fusion-generating transposon, TnphoA, has been a useful tool for studying secreted proteins in other bacteria, this transposon and other Tn5 derivatives transpose inefficiently in Legionella pneumophila, necessitating the construction of a more effective vector for use in this pathogen. Using MudphoA we generated fusions to an E. coli gene encoding a periplasmic protein and to an L. pneumophila gene encoding an outer membrane protein; both sets of fusions resulted in alkaline phosphatase activity. We have begun to use MudphoA to mutate secreted proteins of L. pneumophila specifically, since this subset of bacterial proteins is most likely to be involved in host-bacterial interactions. This modified transposon may be useful for studies of other bacteria that support transposition of Mu, but not Tn5, derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号