首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major mode of natural infection of duck hepatitis B virus (DHBV) in Pekin ducks is vertical transmission, with 95 to 100% of the embryos from DHBV-infected dams eventually becoming infected. Maternally transmitted virus is present in large quantities in the yolk of unincubated eggs and is taken up by the embryo during early development. Synthesis of DHBV DNA in the embryo begins at about 6 days of incubation and coincides with the formation of the liver. DHBV DNA synthesis is incomplete, however, until 8 to 10 days of incubation, as shown by comparing the electrophoretic patterns of DHBV-specific nucleic acid species from embryonic livers at successive stages of development. From 8 days of incubation and continuing throughout embryonic development, subviral particles, which resemble viral replication intermediates isolated from infected livers of post-hatch ducklings, appear in the circulation. These particles contain a polymerase activity that utilizes an RNA template to synthesize viral DNA. Our results suggest that certain host functions, which appear during embryonic development, may be required for DHBV replication and assembly. It is possible that in mammals a similar developmental process occurs. The failure to find human hepatitis B virus in the circulation of most babies, born to hepatitis B virus carrier women, in the first few weeks after birth may reflect such a process.  相似文献   

2.
A head-to-tail trimer of a full-length cDNA clone of the hepatitis delta virus (HDV) genome was examined for infectivity by direct inoculation into the liver of a chimpanzee that was already infected with hepatitis B virus. Five weeks after inoculation, a marked elevation of serum alanine aminotransferase activity was observed, followed by the appearance of high levels of HDV RNA and antigen in both liver and serum and a high level of viral particles in the serum. A transient suppression of hepatitis B virus replication was evident during the acute phase of HDV infection. Seroconversion for antibodies to delta antigen occurred 3 weeks after the onset of the disease. These results demonstrate that a typical HDV infection can be initiated by inoculation of a susceptible animal with recombinant HDV cDNA.  相似文献   

3.
W S Mason  G Seal    J Summers 《Journal of virology》1980,36(3):829-836
A virus found in the sera of Pekin ducks appears to be a new member of the human hepatitis B-like family of viruses. This virus had a diameter of 40 nm and an appearance in the electron microscope similar to that of human hepatitis B virus. The DNA genome of the virus was circular and partially single stranded, and an endogenous DNA polymerase associated with the virus was capable of converting the genome to a double-stranded circle with a size of ca. 3,000 base pairs. An analysis for viral DNA in the organs of infected birds indicated preferential localization in the liver, implicating this organ as the site of virus replication. In all of these aspects, the virus bears a striking resemblance to human hepatitis B virus and appears to be a new member of this family, which also includes ground squirrel hepatitis virus and woodchuck hepatitis virus.  相似文献   

4.
Immunofluorescence assays with fixed tissue sections were used to characterize antibody reactivity in sera obtained from duck hepatitis B virus-infected ducks. Under conditions of experimental infection, antibody to core antigen but not to surface antigen was detectable. A majority of the ducks infected at 8 days after hatching and a minority of those infected at 1 day after hatching showed a transient anti-core antigen humoral response; this response was stronger in the antibody-positive ducks infected on day 8 than in those infected on day 1. Antiviral antibody was not detected in the sera of ducks congenitally infected with duck hepatitis B virus. Several of the infected ducks, but none of the uninfected ducks, exhibited autoantibody reactivity for alpha-islet-cell-associated antigen.  相似文献   

5.
Inoculation of 3-day-old (3D) or 3-week-old (3W) ducklings with duck hepatitis B virus results in chronic or transient infection, respectively. We previously showed that rapid production of neutralizing antibody following inoculation of 3W ducklings prevents virus from spreading in the liver and leads to a transient infection (Y.-Y. Zhang and J. Summers, J. Virol. 78:1195-1201, 2004). In this study we further investigated early events of viral infection in both 3D and 3W ducks. We present evidence that a lower level of virus replication in the hepatocytes of 3W birds is an additional factor that probably favors transient infection. We suggest that lower virus replication is due to a less rapid covalently closed circular DNA amplification, leading to lower viremias and a slower spread of infection in the liver, and that the slower spread of infection in 3W ducks makes the infection more sensitive to interruption by the host immune responses.  相似文献   

6.
The differentiated human hepatoma cell line Hep-G2 was transfected with cloned duck hepatitis B virus (DHBV) DNA. Introduction of closed circular DNA into the human liver cells resulted in the production of viral proteins: core antigen was detected in the cytoplasm, and e antigen, a related product, was secreted into the medium. Moreover, viral particles were released into the tissue culture medium which were indistinguishable from authentic DHBV by density, antigenicity, DNA polymerase activity, and morphology. Intravenous injection of tissue culture-derived DHBV particles into Pekin ducks established DHBV infection. In conclusion, transfection of human hepatoma cells with cloned DHBV DNA results in the production of infectious virus, as occurs with cloned human hepatitis B virus DNA. Human liver cells are therefore competent to support production of the avian and mammalian hepadnaviruses, indicating that liver-specific viral gene expression is controlled by evolutionarily conserved mechanisms. This new DHBV transfection system offers the opportunity to rapidly produce mutated DHBV which then can be further investigated in Pekin ducks.  相似文献   

7.
The structure of integrated viral DNA in a hepatocellular carcinoma of a duck from Chi-tung county in China was analyzed. Three different clones of integrated viral DNA, lambda DHS 6-1, lambda DHS 6-2, and lambda DHE 6-2, were obtained from the neoplastic portion of the liver by molecular cloning. One of the three clones, lambda DHS 6-1, showed inverted repetition of integrated viral DNA with chromosomal flanking sequences. Another clone, lambda DHS 6-2, showed a head-to-head configuration of the core and surface gene regions of duck hepatitis B virus (DHBV) DNA. The virus-chromosome junctions were often located near direct repeat 1 or 2 of DHBV DNA in three independent clones. Nucleotide sequences at the virus-virus junctions in two clones, lambda DHS 6-1 and 6-2, indicated the possible rearrangement of chromosomal DNA and recombination of viral DNA. DHBV DNA appears to be integrated into the genome of hepatocytes in a manner similar to that of human and woodchuck hepatitis viruses. Thus, the duck system may serve as a useful animal model for the study of human hepatocarcinogenesis.  相似文献   

8.
In this study, we report that eukaryotic topoisomerase I (top1) can linearize the open circular DNA of duck hepatitis B virus (DHBV). Using synthetic oligonucleotides mimicking the three-strand flap DR1 region of the DHBV genome, we found that top1 cleaves the DNA plus strand in a suicidal manner, which mimics the linearization of the virion DNA. We also report that top1 can cleave the DNA minus strand at specific sites and can linearize the minus strand via a non-homologous recombination reaction. These results are consistent with the possibility that top1 can act as a DNA endo-nuclease and strand transferase and play a role in the circularization, linearization and possibly integration of viral replication intermediates.  相似文献   

9.
10.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

11.
12.
Aylesbury ducks (Anas platyrhynchos) chronically infected with the duck hepatitis B virus provide a useful model for studying hepadna-virus infection, replication and the effects of antiviral therapy. In these studies, it is necessary to have an effective method for obtaining repeat liver specimens for histological and molecular analyses. We have therefore developed a percutaneous liver biopsy technique which has a low rate of complications, can be performed at repeated intervals, and provides sufficient quantities of liver tissue for histological and nucleic acid hybridization analysis.  相似文献   

13.
We have investigated the mechanism of duck hepatitis B virus (DHBV) entry into susceptible primary duck hepatocytes (PDHs), using mutants of carboxypeptidase D (gp180), a transmembrane protein shown to act as the primary cellular receptor for avian hepatitis B virus uptake. The variant proteins were abundantly produced from recombinant adenoviruses and tested for the potential to functionally outcompete the endogenous wild-type receptor. Overexpression of wild-type gp180 significantly enhanced the efficiency of DHBV infection in PDHs but did not affect ongoing DHBV replication, an observation further supporting gp180 receptor function. A gp180 mutant deficient for endocytosis abolished DHBV infection, indicating endocytosis to be the route of hepadnaviral entry. With further gp180 variants, carrying mutations in the cytoplasmic domain and characterized by an accelerated turnover, the ability of gp180 to function as a DHBV receptor was found to depend on a wild-type-like sorting phenotype which largely avoids transport toward the endolysosomal compartment. Based on these data, we propose a model in which a distinct intracellular DHBV traffic to the endosome, but not beyond, is a prerequisite for completion of viral entry, i.e., for fusion and capsid release. Furthermore, the deletion of the two enzymatically active carboxypeptidase domains of gp180 did not lead to a loss of receptor function.  相似文献   

14.
Duck hepatitis B virus (DHBV) DNA synthesis in congenitally infected ducks is inhibited by 2'-deoxycarbocyclic guanosine (2'-CDG). Three months of therapy reduces the number of infected hepatocytes at least 10-fold (W.S. Mason, J. Cullen, J. Saputelli, T.-T. Wu, C. Liu, W.T. London, E. Lustbader, P. Schaffer, A.P. O'Connell, I. Fourel, C.E. Aldrich, and A.R. Jilbert, Hepatology 19:393-411, 1994). The present study was performed to determine the kinetics of disappearance of infected hepatocytes and to evaluate the role of hepatocyte turnover in this process. Essentially all hepatocytes were infected before drug therapy. Oral treatment with 2'-CDG resulted in a prompt reduction in the number of infected hepatocytes. After 2 weeks, only 30 to 50% appeared to still be infected, and less than 10% were detectably infected after 5 weeks of therapy. To assess the possible role of hepatocyte turnover in these changes, 5-bromo-2'-deoxyuridine (BUdR) was administered 8 h before liver biopsy to label host DNA in hepatocytes passing through S phase, and stained nuclei were detected in tissue sections by using an antibody reactive to BUdR. The extent of nuclear labeling after 5 weeks was the same as that before therapy (ca. 1%). However, biopsies taken after 2 weeks of therapy showed a ca. 10-fold elevation in the number of nuclei labeled with BUdR. This result suggested that a rapid clearance of infected hepatocytes by 2'-CDG was caused not just by the inhibition of viral replication but also by an acceleration of the rate of hepatocyte turnover. To test this possibility further, antiviral therapy was carried out with another strong inhibitor of DHBV DNA synthesis, 5-fluoro-2',3'-dideoxy-3'-thiacytidine (524W), which did not accelerate hepatocyte turnover in ducks. 524W administration led to a strong inhibition of virus production but to a slower rate of decline in the number of infected hepatocytes, so that ca. 50% (and perhaps more) were still infected after 3 months of therapy. In addition, histopathologic evaluation of 2'-CDG-treated ducks revealed liver injury, especially at the start of therapy. No liver damage was observed during 524W therapy. These results imply that clearance of infected hepatocytes from the liver is correlated with hepatocyte turnover. Thus, in the absence of immune clearance or other sources for the accelerated elimination of infected hepatocytes, inhibitors of virus replication would have to be administered for a long period to substantially reduce the burden of infected hepatocytes in the liver.  相似文献   

15.
16.
Analysis of duck hepatitis B viral DNA by gel electrophoresis, Southern blotting, and binding to benzoylated naphthoylated DEAE-cellulose showed that a protein is bound to the minus-strand virion DNA as well as to the full-length single strand, minus-strand species, and minus-strand DNA intermediates isolated from replicating complexes present in infected duck liver. By utilizing a modified dideoxynucleotidyl sequencing method, it was shown that the protein is covalently bound to the smallest detectable growing strands (ca. 30 bases) and that minus-strand synthesis begins at a unique site. These results support the notion that the protein may function as a primer for synthesis of the minus-strand DNA.  相似文献   

17.
18.
Superinfection exclusion is the phenomenon whereby a virus prevents the subsequent infection of an already infected host cell. The Pekin duck hepatitis B virus (DHBV) model was used to investigate superinfection exclusion in hepadnavirus infections. Superinfection exclusion was shown to occur both in vivo and in vitro with a genetically marked DHBV, DHBV-ClaI, which was unable to establish an infection in either DHBV-infected ducklings or DHBV-infected primary duck hepatocytes (PDHs). In addition, exclusion occurred in vivo even when the second virus had a replicative advantage. Superinfection exclusion appears to be restricted to DHBV, as adenovirus, herpes simplex virus type 1, and vesicular stomatitis virus were all capable of efficiently infecting DHBV-infected PDHs. Exclusion was dependent on gene expression by the original infecting virus, since UV-irradiated DHBV was unable to mediate the exclusion of DHBV-ClaI. Using recombinant adenoviruses expressing DHBV proteins, we determined that the large surface antigen mediated exclusion. The large surface antigen is known to cause down-regulation of a DHBV receptor, carboxypeptidase D (CPD). Receptor down-regulation is a mechanism of superinfection exclusion seen in other viral infections, and so it was investigated as a possible mechanism of DHBV-mediated exclusion. However, a mutant large surface antigen which did not down-regulate CPD was still capable of inhibiting DHBV infection of PDHs. In addition, exclusion of DHBV-ClaI did not correlate with a decrease in CPD levels. Finally, virus binding assays and confocal microscopy analysis of infected PDHs indicated that the block in infection occurs after internalization of the second virus. We suggest that superinfection exclusion may result from the role of the L surface antigen as a regulator of intracellular trafficking.  相似文献   

19.
Conditional replication of duck hepatitis B virus in hepatoma cells   总被引:2,自引:0,他引:2       下载免费PDF全文
To facilitate investigations of replication and host cell interactions in the hepadnavirus system, we have developed cell lines permitting the conditional replication of duck hepatitis B virus (DHBV). With the help of this system, we devised conditions for core particle isolation that preserve replicase activity, which was not found in previous preparations. Investigations of the stability of viral DNA intermediates indicated that both encapsidated DNA and covalently closed circular DNA (cccDNA) were turned over independently of cell division. Moreover, we showed that alpha interferon reduced the accumulation of RNA-containing viral particles. The availability of a synchronized replication system will permit the biochemical analysis of individual steps of the viral replication cycle, including the mechanism and regulation of cccDNA formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号