首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of streptomycin-resistance of Escherichia coli mutants.   总被引:2,自引:0,他引:2  
We previously reported about Escherichia coli transformation experiments yielding streptomycin-resistant cells carrying a C912 to T transition in a plasmid-born 16S rRNA gene. These experiments were based on results obtained with streptomycin-resistant Euglena chloroplasts bearing an equivalent mutation in the single chloroplast 16S rRNA gene. We extended this study and transformed E. coli with plasmid constructs having a mutated 16S rRNA gene at position 914 (A to C) or a double mutation at positions 912 and 888 (C to T:G to A) or a mutation in the S12 gene (Lys-42 to Thr). We tested the transformed cells before and after a screening procedure in the presence of streptomycin. We find that the plasmid-born mutations protect colonies against a short streptomycin exposure, but ribosomes carrying mutated 16S rRNA do not significantly reduce codon misreading in vitro. However, ribosomes isolated from transformed cells after the screening procedure resist misreading. These ribosomes have acquired a second mutation in the S12 protein as shown in one case by sequencing and by transformation experiments. Furthermore, we show that the A914 to C mutation prevents (strongly reduces) base methylation in the central domain of 16S rRNA.  相似文献   

2.
3.
We sequenced the chloroplast 16S rRNA gene of two Euglena gracilis mutants which contain streptomycin-resistant chloroplasts (Smr 139.12/4 and Smr 139.20/2). These mutants are known to contain a single intact rrn operon per circular chloroplast genome. Nucleotide sequence comparison between a 16S rRNA gene of wild type Euglena gracilis, strain Z, with streptomycin-sensitive chloroplasts, and the 16S rRNA gene of both Smr-strains reveals a single base change (C to T) at position 876. This position is equivalent to the invariant position 912 of the E. coli 16S rRNA gene. The analogous position is also conserved in all chloroplast small subunit RNA genes from lower and higher plants sequenced so far. Light dependent protein synthesis with purified chloroplasts from streptomycin-resistant cells is not inhibited by streptomycin. Based on the results reported here we postulate linkage between the observed point mutation on the 16S rRNA gene and streptomycin-resistance of chloroplast 70S ribosomes.  相似文献   

4.
Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting related aminoglycoside antibiotics such as neomycin, kanamycin or gentamicin, which do not compete for the streptomycin binding site. The 530 loop where the mutation in the 16S rRNA is located has been mapped at the external surface of the 30S subunit, and is therefore distal from the streptomycin binding site at the subunit interface. Our results support the conclusion that the mutation at position 523 in the 16S rRNA does not interfere with the binding of streptomycin, but prevents the drug from inducing conformational changes in the 530 loop which account for its miscoding effect. Since this effect primarily results from a perturbation of the translational proofreading control, our results also provide evidence that the 530 loop of the 16S rRNA is involved in this accuracy control.  相似文献   

5.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

6.
A single base change in 16S rRNA (C-726 to G) was constructed by site-directed mutagenesis and cloned into the multicopy plasmid pKK3535 (generating pKK726G) which contains the complete rrnB operon from Escherichia coli. The mutant 16S rRNA was found predominantly in the 30S subunit fraction but was present in the 70S ribosomes. Protein analyses of the free 30S subunits revealed a decrease in the levels of ribosomal proteins S2 and S21 while the composition of the 70S ribosomes was as the wild-type. Transformants of pKK726G were temperature sensitive for growth, although the mutant ribosomes themselves were translationally active in vivo at 37 and 42 degrees C. Two-dimensional gel electrophoresis of the proteins translated in vivo revealed an altered protein profile which included novel proteins, changes in the levels of normal proteins, and the presence of heat shock proteins (HSPs) at 30 degrees C. Inactivation of the host encoded wild-type ribosomes coincided with a significant decrease in the synthesis of the HSPs. We therefore believe the induction of the HSPs to be a secondary response by the cells to the presence of the abnormal proteins.  相似文献   

7.
Two single-base substitutions were constructed in the 2660 loop of Escherichia coli 23S rRNA (G2661-->C or U) and were introduced into the rrnB operon cloned in plasmid pKK3535. Ribosomes were isolated from bacteria transformed with the mutated plasmids and assayed in vitro in a poly(U)-directed system for their response to the misreading effect of streptomycin, neomycin, and gentamicin, three aminoglycoside antibiotics known to impair the proofreading control of translational accuracy. Both mutations decreased the stimulation of misreading by these drugs, but neither interfered with their binding to the ribosome. The response of the mutant ribosomes to these drugs suggests that the 2660 loop, which belongs to the elongation factor Tu binding site, is involved in the proofreading step of the accuracy control. In vivo, both mutations reduced read-through of nonsense codons and frameshifting, which can also be related to the increased efficiency in proofreading control which they confer to ribosomes.  相似文献   

8.
9.
P N Allen  H F Noller 《Cell》1991,66(1):141-148
A C to U substitution at position 1469 of 16S ribosomal RNA (rRNA) from Escherichia coli suppresses streptomycin dependence and causes increased translational error frequencies. Strains containing the rpsL252 or StrM287 streptomycin-dependent alleles are able to grow in the absence of streptomycin when transformed with plasmids containing the U1469 mutation in 16S rRNA. Ribosomes containing wild-type proteins and U1469 mutant 16S rRNA misincorporate leucine in vitro at elevated levels, comparable to that of some typical S4 ram ribosomes. These results provide additional support for the participation of 16S rRNA in maintaining translational accuracy.  相似文献   

10.
11.
Point mutations in the 3'' minor domain of 16S rRNA of E.coli.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

12.
A single base substitution mutation from guanine to cytosine was constructed at position 2661 of Escherichia coli 23S rRNA and cloned into the rrnB operon of the multi-copy plasmid pKK3535. The mutant plasmid was transformed into E.coli to determine the effect of the mutation on cell growth as well as the structural and functional properties of the mutant ribosomes in vivo and in vitro. The results show that the mutant ribosomes have a slower elongation rate and an altered affinity for EF-Tu-tRNA-GTP ternary complex. This supports previous findings which indicated that position 2661 is part of a region of 23S rRNA that forms a recognition site for binding of the ternary complex in the ribosomal A site. Combinations of the 2661 mutation with various mutations in ribosomal protein S12 also demonstrate that elements of both ribosomal subunits work in concert to form this binding site.  相似文献   

13.
Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33.  相似文献   

14.
The nine possible single-base substitutions were produced at positions 913 to 915 of the 16S ribosomal RNA of Escherichia coli, a region known to be protected by streptomycin [Moazed, D. and Noller, H.F. (1987) Nature, 327, 389-394]. When the mutations were introduced into the expression vector pKK3535, only two of them (913A----G and 915A----G) permitted recovery of viable transformants. Ribosomes were isolated from the transformed bacteria and were assayed for their response to streptomycin in poly(U)- and MS2 RNA-directed assays. They were resistant to the stimulation of misreading and to the inhibition of protein synthesis by streptomycin, and this correlated with a decreased binding of the drug. These results therefore demonstrate that, in line with the footprinting studies of Moazed and Noller, mutations in the 915 region alter the interaction between the ribosome and streptomycin.  相似文献   

15.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

16.
Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The K(diss) for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 x 10(-7) M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm(1) (r)BNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The K(diss) for the chloroplast ribosome-dihydrostreptomycin complex of Sm(1) (r) is 387 x 10(-7) M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 x 10(-7) M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena.  相似文献   

17.
Restriction fragment length polymorphisms (RFLPs) of rRNA genes were evaluated as a tool for intra- and interspecies differentiation of Peptostreptococcus isolates. RFLPs from a collection of 20 clinical isolates and five ATCC strains representing five Peptostreptococcus spp. (P. anaerobius, P. asaccharolyticus, P. magnus, P. micros and P. prevotii) were obtained by hybridization of Southern blots of HindIII- or EcoRI-digested genomic DNA with three probes: probe A, a 0.98 kb HindIII fragment with a partial 16S rRNA gene sequence from P. anaerobius ATCC 27337; probe B, cloned Escherichia coli rrnB operon in plasmid pKK3535; and probe C, E. coli 16S and 23S rRNA. The hybridization patterns varied, but all yielded RFLPs useful for both intra- and inter-species differentiation. RFLPs of P. asaccharolyticus clinical isolates were closely related to each other and differed significantly from those of the ATCC type strains. The profiles of P. prevotii differed from those of the other four species studied, and based on the HindIII- and EcoRI-generated RFLPs, the strains in this species are more heterogeneous than the other four species studied.  相似文献   

18.
We studied the dissociation rates of peptidyl-tRNA from the P-site of poly(U)-programmed wild-type Escherichia coli ribosomes, hyperaccurate variants altered in S12 (SmD, SmP) and error-prone variants (Ram) altered in S4 or S5. The experiments were carried out in the presence and absence of streptomycin, and the effects of neomycin were tested in the wild-type ribosomes. Binding of peptidyl-tRNA to the P-site of wild-type ribosomes is much stronger than to their A-site. Addition of streptomycin dramatically reduces its affinity for the P-site. The S12 alternations make the P-site binding of peptidyl-tRNA much tighter, and the S4, S5 alterations make it weaker than in the case of the wild-type. We find that when binding of peptidyl-tRNA to the A-site is weak, then the affinity for the P-site is stronger, and vice versa. From these results, we formulate a hypothesis for the actions of streptomycin and neomycin based on deformations of the 16S rRNA tertiary structure. The results are also used to interpret some in vivo experiments on translational processivity.  相似文献   

19.
20.
Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号