首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended glycoconjugate binding specificities of three sialic acid-dependent immunoglobulin-like family member lectins (siglecs), myelin-associated glycoprotein (MAG), Schwann cell myelin protein (SMP), and sialoadhesin, were compared by measuring siglec-mediated cell adhesion to immobilized gangliosides. Synthetic gangliosides bearing the alpha-series determinant (NeuAc alpha2,6-linked to GalNAc on a gangliotetraose core) were tested, including GD1alpha (IV(3)NeuAc, III(6)NeuAc-Gg(4)OseCer), GD1alpha with modified sialic acid residues at the III(6)-position, and the "Chol-1" gangliosides GT1aalpha (IV(3)NeuAc, III(6)NeuAc, II(3)NeuAc-Gg(4)OseCer) and GQ1balpha (IV(3)NeuAc, III(6)NeuAc, II(3)(NeuAc)(2)-Gg(4)OseCer). The alpha-series gangliosides displayed enhanced potency for MAG- and SMP-mediated cell adhesion (GQ1balpha > GT1aalpha, GD1alpha > GT1b, GD1a > GM1 (nonbinding)), whereas sialoadhesin-mediated adhesion was comparable with alpha-series and non-alpha-series gangliosides. GD1alpha derivatives with modified sialic acids (7-, 8-, or 9-deoxy) or sulfate (instead of sialic acid) at the III(6)-position supported adhesion comparable with that of GD1alpha. Notably, a novel GT1aalpha analog with sulfates at two internal sites of sialylation (NeuAcalpha2,3Galbeta1,4GalNAc-6-sulfatebeta1, 4Gal3-sulfatebeta1,4Glcbeta1,1'ceramide) was the most potent siglec-binding structure tested to date (10-fold more potent than GT1aalpha in supporting MAG and SMP binding). Together with prior studies, these data indicate that MAG and SMP display an extended structural specificity with a requirement for a terminal alpha2, 3-linked NeuAc and great enhancement by nearby precisely spaced anionic charges.  相似文献   

2.
1,3-Butadiene (BD) is a major industrial chemical and a rodent carcinogen, with mice being much more susceptible than rats. Oxidative metabolism of BD, leading to the DNA-reactive epoxides 1,2-epoxy-3-butene (BMO), 1,2-epoxy-3,4-butanediol (EBD) and 1,2:3,4-diepoxybutane (DEB), is greater in mice than rats. In the present study the DNA adduct profiles in liver and lungs of rats and mice were determined following exposure to BMO and to BD since these profiles may provide qualitative and quantitative information on the DNA-reactive metabolites in target tissues. Adducts detected in vivo were identified by comparison with the products formed from the reaction of the individual epoxides with 2'-deoxyguanosine (dG). In rats and mice exposed to [4-14C]-BMO (1-50 mg/kg, i.p.), DNA adduct profiles were similar in liver and lung with N7-(2-hydroxy-3-butenyl)guanine (G1) and N7-(1-(hydroxymethyl)-2-propenyl)guanine (G2) as major adducts and N7-2,3,4-trihydroxybutylguanine (G4) as minor adduct. In rats and mice exposed to 200 ppm [2,3-14C]-BD by nose-only inhalation for 6 h, G4 was the major adduct in liver, lung and testes while G1 and G2 were only minor adducts. Another N7-trihydroxybutylguanine adduct (G3), which could not unambiguously be identified but is either another isomer of N7-2,3,4-trihydroxybutylguanine or, more likely, N7-(1-hydroxymethyl-2,3-dihydroxypropyl)guanine, was present at low concentrations in liver and lung DNA of mice, but absent in rats. The evidence indicates that the major DNA adduct formed in liver, lung and testes following in vivo exposure to BD is G4, which is formed from EBD, and not from DEB.  相似文献   

3.
We have examined the selectivity of rat liver microsomal epoxide hydrolase (EC 3.3.2.3) toward all of the possible positional isomers of benzo-ring diol epoxides and tetrahydroepoxides of benz[a]anthracene, as well as the 1,2-diol 3,4-epoxides of triphenylene. This set includes compounds with no bay region in the vicinity of the benzo-ring, a bay-region diol group, a bay-region epoxide group, and (for the triphenylene derivatives) both a bay-region diol and a bay-region epoxide. In all cases where both the tetrahydroepoxides and the corresponding diol epoxides were examined, there is a large retarding effect of hydroxyl substitution on the rate of the enzyme-catalyzed hydration. When the tetrahydroepoxides are fair or poor substrates (epoxide group in the 1,2-, 8,9-, or 10,11-position), the additional retardation introduced by adjacent hydroxyl groups causes the enzyme-catalyzed hydrolysis of the corresponding diol epoxides to be insignificantly slow or nonexistent. In contrast, a benz[a]anthracene derivative with an epoxide group in the 3,4-position, (-)-tetrahydrobenz[a]anthracene (3R,4S)-epoxide, has been identified as the best substrate known for epoxide hydrolase, with a Vmax at 37 degrees C and pH 8.4 of 6800 nmol/min/mg of protein, and the two diastereomeric (+/-)-benz[a]anthracene 1,2-diol 3,4-epoxides, unlike all the other diol epoxides examined to date, are moderately good substrates for epoxide hydrolase. This novel observation is accounted for by the fact that the very high reactivity of the tetrahydrobenz[a]anthracene 3,4-epoxide system towards epoxide hydrolase is large enough to overcome a kinetically unfavorable effect of hydroxyl substitution. The enantioselectivity and positional selectivity of the enzyme have been determined for the tetrahydro-1,2- and -3,4-epoxides of benz[a]anthracene as well as the 1,2-diol 3,4-epoxides. When the epoxide is located in the 3,4-position, the benzylic carbon is the preferred site of attack, whereas for the enantiomers of the bay-region tetrahydro-1,2-epoxides, the chemically less reactive non-benzylic carbon is preferred. The regio- and enantioselectivity of epoxide hydrolase are discussed in terms of a possible model for the hydrophobic binding site of this enzyme.  相似文献   

4.
Metabolism of (+)-, (-)-, and (+/-)-trans-3,4-dihydroxy-3, 4-dihydrobenzo[c]phenanthrenes by liver microsomes from rats and mice and by a purified monooxygenase system reconstituted with cytochrome P-450c has been examined. Bay-region 3,4-diol 1,2-epoxides are minor metabolites of both enantiomers of the 3,4-dihydrodiol with liver microsomes from 3-methylcholanthrene-treated rats or with the reconstituted system (less than 10% of total metabolites). Microsomes from control and phenobarbital-treated rats and from control mice form higher percentages of these diol epoxides (13-36% of total metabolites). Microsomes from 3-methylcholanthrene-treated rats and cytochrome P-450c in the reconstituted system form exclusively the diol expoxide-1 diastereomer, in which the benzylic hydroxyl group and oxirane oxygen are cis to each other, from the (+)-(3S,4S)-dihydrodiol. The same enzymes selectively form the diol expoxide-2 diastereomer, with its oxirane oxygen and benzylic hydroxyl groups trans to each other, from the (-)-(3R,4R)-dihydrodiol (77% of the total diol epoxides). Liver microsomes from control rats show similar stereoselectivity whereas liver microsomes from phenobarbital-treated rats and from control mice are less stereoselective. Three bis-dihydrodiols and three phenolic dihydrodiols are also formed from the enantiomeric 3,4-dihydrodiols of benzo[c]phenanthrene. A single diastereomer of one of these bis-dihydrodiols with the newly introduced dihydrodiol group at the 7,8-position accounts for 79-88% of the total metabolites of the (-)-(3R,4R)-dihydrodiol formed by liver microsomes from 3-methylcholanthrene-treated rats or by the reconstituted system containing epoxide hydrolase. In contrast, the (+)-(3S,4S)-dihydrodiol is metabolized to two diastereomers of this bis-dihydrodiol, a third bis-dihydrodiol, and two phenolic dihydrodiols.  相似文献   

5.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

6.
A synthesis of (15:1)-urushiol, urushiol monoene, 3-[(Z)-pentadec-8-enyl] catechol, 1,2-dihydroxy-3-[(Z)-pentadec-8-enyl] benzene, one of the toxic principles of Rhus toxicodendron and of Rhus vernicifera is described. 6-Chlorohexan-1-ol protected at the OH group with ethyl vinyl ether reacted with 2,3-dimethoxybenzaldehyde in the presence of lithium to give, after removal of the protective group with methanolic 4-toluenesulphonic acid, 1-(2,3-dimethoxyphenyl) heptane-1,7-diol. Catalytic hydrogenolysis in ethanol with palladium–carbon selectively afforded 7-(2,3-dimethoxyphenyl)heptane-1-ol accompanied by a small proportion of the 7-(3-methoxyphenyl)heptane-1-diol, formed by demethoxylation. Reaction of the dimethoxy compound with boron tribromide resulted in both bromination and demethylation to give 7-(2,3-dihydroxyphenyl) heptylbromide. This bromide in tetrahydrofuran (THF) containing hexamethylphosphoric triamide reacted with excess lithium oct-1-yne to give 3-(pentadec-8-enyl)catechol which, by catalytic hydrogenation in ethyl acetate containing quinoline, selectively formed the required cis product, 3-[(Z)-pentadec-8-enyl]catechol which was identical chromatographically and spectroscopically with urushiol monoene separated from the natural product.  相似文献   

7.
A new intercalating nucleic acid monomer X was obtained in high yield starting from alkylation of 4-iodophenol with (S)-(+)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was coupled under Sonogashira conditions with trimethylsilylacetylene (TMSA) to achieve the TMS protected (S)-4-(4-((trimethylsilyl)ethynyl)phenoxy)butane-1,2-diol. Tetrabutylammonium flouride was used to remove the silyl protecting group to obtain (S)-4-(4-ethynylphenoxy)butane-1,2-diol which was coupled under Sonogashira conditions with 2-(9-bromo-6H-indolo[2,3-b]quinoxalin-6-yl)-N,N-dimethylethanamine to achieve (S)-4-(4-((6-(2-(dimethylamino)ethyl)-6H-indolo[2,3-b]quinoxalin-9-yl)ethynyl)phenoxy)butane-1,2-diol. This compound was tritylated with 4,4′-dimethoxytrityl chloride followed by treatment with 2-cyanoethyltetraisopropylphosphordiamidite in the presence of N,N′-diisopropyl ammonium tetrazolide to afford the corresponding phosphoramidite. This phosphoramidite was used to insert the monomer X into an oligonucleotide which was used for thermal denaturation studies of a corresponding parallel triplex.  相似文献   

8.
The racemic 7-substituted 3,4a-dimethyl-4a,5a,8a,8b-tetrahydro-6H-pyrrolo[3',4':4,5]furo[3,2-b]pyridine-6,8(7H)-diones represent novel tricyclic compounds with strong in vivo efficacy against the parasitic nematode Haemonchus contortus Rudolphi in sheep. Here we report on the synthesis of tricyclic endo-2,3-dihydro[3,2-b]pyridine-type cycloadducts and describe the separation of the racemic 3,4a-dimethyl-7-ethyl-4a,5a,8a,8b-tetrahydro-6H-pyrrolo[3',4':4,5]furo[3,2]pyridine-6,8(7H)-dione into the enantiomers by HPLC. The absolute configuration of the most anthelmintically active (4aS,5aS,8aS,8bR)-enantiomer was determined by single crystal X-ray analysis using its stable (4aS,5aS,8aS,8bR)-enantiomer-CuCl2 (2:1)-complex.  相似文献   

9.
Reaction of L-tartaric acid with thiocarbohydcrazide afforded (1R, 2S)-1,2-bis(4-amino-5-mercapto-1,2,4-triazol-3-yl)-ethane-1,2-diol (3). The functional groups in 3 allowed the construction of fused heterocycles on the 1,2,4-triazole rings, mainly of the 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine type as in 4, 5, 7, 10, 13 and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole type as in 14.  相似文献   

10.
Kinetic resolution of the enantiomers of trans -1-phenylpropene oxide and (2,3-epoxypropyl)benzene was achieved by yeasts from the genus Rhodotorula. The resolution of trans -1-phenylpropene oxide by Rhodotorula glutinis UOFS Y-0123 yielded (1R,2R)-epoxide (ee >98%, yield 30%) and (1R,2S)-diol (ee 95%, yield 40%). The highest enantio- and regioselectivity toward (2,3-epoxypropyl)benzene resided in Rhodotorula sp. UOFS Y-0448 (E = 6.16), yielding (S)-epoxide (ee 64%, yield 33%) and (R)-diol (ee 67%, yield 28%). This confirms the superiority of yeasts from the Basidiomycetes genera in the enantioselective hydrolysis of epoxides from different structural classes.  相似文献   

11.
Three macrocyclic analogues of rhazinilam 1 having a 11- or 12-membered B-ring with an endocyclic carbamate group or an amino-acid residue were synthesized from the natural product. These analogues 3 and 4 displayed a very low activity on tubulin. Thirty N-1 and C-16 substituted analogues of rhazinilam were also synthesized regioselectively from rhazinilam. Stereochemical analyses showed that N-1 and C-16alpha analogues have the same conformation as rhazinilam, whereas C-16beta analogues adopt a different conformation for rings B and D. All N-1 and C-16 analogues were less active than rhazinilam on tubulin, though analogues 5a, 6aalpha, 6balpha, and 6f having the less bulky substituents retained close affinities. A few analogues either active (like 6f) or inactive (like 5o) on tubulin showed significant inhibition of the growth of KB cancer cells.  相似文献   

12.
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.  相似文献   

13.
Following the program started at Johnson & Johnson Pharmaceutical Research & Development searching for 5-HT(2A/2C) antagonists we now report on the synthesis of a series of substituted 2-(aminomethyl)-3,3a,8,12b-tetrahydro-2H-dibenzocyclohepta[1,2-b]furan derivatives. The 5-HT2A, 5-HT2C and H1 receptor affinities of the described compounds are reported. The mCCP antagonistic activity of a set of selected molecules is also reported.  相似文献   

14.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   

15.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

16.
Bjerkandera adusta produces many chlorometabolites including chlorinated anisyl metabolites (CAMs) and 1-arylpropane-1,2-diols (1, 2, 3, 4) as idiophasic metabolic products of L-phenylalanine. These diols are stereoselectively biosynthesized from a C7-unit (benzylic, from L-phenylalanine) and a C2-unit, of unknown origin, as predominantly erythro (1R,2S) enantiomers. Of the labeled amino acids tested as possible C2-units, at the 4-10 mM level, none were found to efficiently label the 2,3-propane carbons of the diols. However, glycine (2-13C), L-serine (2,3,3-d3) and L-methionine (methyl-d3) entered the biomethylation pathway. Neither pyruvate (2,3-13C2), acetate (1,2-13C2), acetaldehyde (d4) nor ethanol (ethyl-d5) labeled the 2,3-propane carbons of the diols at the 4-10 mM level. Pyruvate (2,3-13C2) and L-serine (2,3,3-d3) (which also entered the biomethylation pathway) did, however, effectively label the 2,3-propane carbons of the alpha-ketols and diols at the 40 mM level as evidenced by mass spectrometry. Glycerol (1,1,2,3,3-d5) also appeared to label one of the 2,3-propane carbons (ca. 5% as 2H2 in the C3 side chain) as suggested by mass spectrometric data and also entered the biomethylation pathway, likely via amino acid synthesis. Glycerol (through pyruvate), therefore, likely supplies C2 and C3 of the propane side chain with arylpropane diol biosynthesis. Incubation of B. adusta with synthetic [2-2H1, 2-18O]-glycerol showed that neither 2H nor 18O were incorporated in the alpha-ketols or diols. The oxygen atom on the C2 of the ketols/diols, therefore, does not appear to come from the oxygen atom on the C2 of glycerol. Glycerol, however, can readily form L-serine (which can then form pyruvate via PLP/serine dehydratase and involve transamination washing out the 18O label and providing the oxygen from water), and can then go on to label the C2-unit. Labeled alpha-ketol, phenyl acetyl carbinol (5) (PAC; ring-d(5), 2,3-13C2 propane) cultured with B. adusta leads to stereospecific reduction to the (1R,2S)-diol (6) (ring-d5 and 2,3-13C2); in all other metabolites produced, the 2,3-13C2) label is washed out. Incubation of the fungus with 4-fluorobenzaldehyde (13) produces a pooling of predominantly erythro (1R,2S) 1-(4'-fluorophenyl)-1,2-propane diol (18 as diacetate) (through the corresponding alpha-ketols 16, 17). Blocking the para-position with fluorine thus appears to prevent ring oxygenation and also chlorination, forcing the conclusion that para-ring oxygenation precedes meta-chlorination.  相似文献   

17.
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine (HAA) that arises in tobacco smoke. UDP-glucuronosyltransferases (UGTs) are important enzymes that detoxicate many procarcinogens, including HAAs. UGTs compete with P450 enzymes, which bioactivate HAAs by N-hydroxylation of the exocyclic amine group; the resultant N-hydroxy-HAA metabolites form covalent adducts with DNA. We have characterized the UGT-catalyzed metabolic products of AαC and the genotoxic metabolite 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC) formed with human liver microsomes, recombinant human UGT isoforms, and human hepatocytes. The structures of the metabolites were elucidated by (1)H NMR and mass spectrometry. AαC and HONH-AαC underwent glucuronidation by UGTs to form, respectively, N(2)-(β-D-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Gl) and N(2)-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON(2)-Gl). HONH-AαC also underwent glucuronidation to form a novel O-linked glucuronide conjugate, O-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN(2)-O-Gl). AαC-HN(2)-O-Gl is a biologically reactive metabolite and binds to calf thymus DNA (pH 5.0 or 7.0) to form the N-(deoxyguanosin-8-yl)-AαC adduct at 20-50-fold higher levels than the adduct levels formed with HONH-AαC. Major UGT isoforms were examined for their capacity to metabolize AαC and HONH-AαC. UGT1A4 was the most catalytically efficient enzyme (V(max)/K(m)) at forming AαC-N(2)-Gl (0.67 μl·min(-1)·mg of protein(-1)), and UGT1A9 was most catalytically efficient at forming AαC-HN-O-Gl (77.1 μl·min(-1)·mg of protein(-1)), whereas UGT1A1 was most efficient at forming AαC-HON(2)-Gl (5.0 μl·min(-1)·mg of protein(-1)). Human hepatocytes produced AαC-N(2)-Gl and AαC-HN(2)-O-Gl in abundant quantities, but AαC-HON(2)-Gl was a minor product. Thus, UGTs, usually important enzymes in the detoxication of many procarcinogens, serve as a mechanism of bioactivation of HONH-AαC.  相似文献   

18.
Alkaloids from Portulaca oleracea L   总被引:10,自引:0,他引:10  
Xiang L  Xing D  Wang W  Wang R  Ding Y  Du L 《Phytochemistry》2005,66(21):2595-2601
Five alkaloids (oleraceins A, B, C, D and E) were isolated from Portulaca oleracea L., and their structures determined by spectroscopic methods as 5-hydroxy-1-p-coumaric acyl-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-ferulic acyl-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-(p-coumaric acyl-7'-O-beta-D-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside, 5-hydroxy-1-(ferulic acyl-7'-O-beta-D-glucopyranose)-2,3-dihydro-1H-indole-2-carboxylic acid-6-O-beta-D-glucopyranoside and 8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pyrrolo[2,1-a]isoquinolin-3-one, respectively.  相似文献   

19.
The series of naturally occurring furanonaphthoquinones is extended by identification of the derivatives 2-(1'-methylethenyl)-5-hydroxynaphtho[2,3-b]furan-4,9-dione and 2-(1'-methylethenyl)-7-hydroxynaphtho[2,3-b]furan-4,9-dione. They are accompanied in the stem barks of Newbouldia laevis by the known analogues 5-hydroxy-dehydro-iso-alpha-lapachone, 2-acetyl-5-hydroxynaphtho[2,3-b]furan-4,9-dione and 2-(1'-methylethenyl)naphtho[2,3-b]furan-4,9-dione along with the rare atraric acid and the new 2-(1'-methylethenyl)-6-hydroxy-2,3-dihydrobenzofuran. The structures of these compounds were established from spectroscopic studies.  相似文献   

20.
The reductive addition of GSH to p-benzoquinones, 2-hydroxy-p-benzoquinone, and 2,3-epoxy-p-benzoquinones with different degree of methyl substitution was studied in terms of absorption spectral changes and autoxidation reactions. The nucleophilic addition of GSH to p-benzoquinone yields a glutathionyl-p-benzohydroquinone product with maximal absorption at lambda 303nm. This compound autoxidizes slowly--but at a rate 8-fold higher than the parent hydroquinone--to glutathionyl-p-benzoquinone, which reveals maximal absorption at lambda 367 nm. The autoxidation of the glutathionyl derivative is accompanied by O2 consumption and H2O2 formation. The nucleophilic addition of GSH to either 2-hydroxy-p-benzoquinone or 2,3-epoxy-p-benzoquinone yields the same primary molecular product, 2-hydroxy-5-glutathionyl-p-benzohydroquinone, a compound that shows maximal absorption at lambda 300 nm and autoxidizes at rates substantially higher (44-fold) than the parent glutathionyl hydroquinone lacking a -OH substituent. The autoxidation product, 2-hydroxy-5-glutathionyl-p-benzoquinone, reveals maximal absorbance at lambda 343 nm as well as a resolved absorption band at longer wavelengths (lambda 520 nm), the latter contributed by the -OH substituent. The glutathionyl substituent exerted only minor changes in the reduction potential of the quinones, whereas the -OH substituent lowered significantly the half-wave reduction potential, as measured in aqueous solutions. The rate of autoxidation was markedly enhanced by both substituents as follows: hydroxy-glutathionyl-p-benzohydroquinone much greater than hydroxy-p-benzohydroquinone much greater than glutathionyl-p-benzohydroquinone greater than p-benzohydroquinone. Superoxide dismutase enhanced the rate of autoxidation of p-benzohydroquinone and its glutathionyl adduct, whereas it inhibited autoxidation of the hydroxy derivatives with or without glutathionyl substitution. The biochemical significance of these results is discussed in terms of the pro-oxidant character of the reductive addition of GSH to p-benzoquinones, alpha-hydroxyquinones, and quinone epoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号