首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and the prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool.Studies on the dissociation process of thyroxine from its plasma carrier proteins show that the various plasma carrier proteins share two roles. Of the two types of protein, the thyroxine-binding globulin (the high affinity binding protein) contributes only 27% of the free thyroxine in a rapid transition process, despite its being the major binding protein. But prealbumin-2, which has lower affinity towards thyroxine, participates mainly in a rapid flux of the free thyroxine pool. Thus thyroxine-binding globulin acts predominantly as a plasma reservoir of thyroxine, and also probably in the ‘buffering’ action on plasma free thyroxine level, in the long term, while prealbumin-2 participates mainly in the maintainance of constancy of free thyroxine levels even in the short term. The existence of these two types of binding protein facilitates compensation for the metabolic flux of the free ligand and maintenance of the thyroxine pool within a very narrow range.  相似文献   

2.
3.
1. The binding parameters of prealbumin-2 with retinol-binding protein and thyroxine (T4) revealed the existence of distinct and multiple sites for both retinol-binding protein and T4. 2. From the analysis of binding parameters of retinol-binding protein with prealbumin-2 it is clear that under steady-state conditions about 99% of the holo-retinol-binding protein remains bound to prealbumin-2. 3. Equilibrium dialysis studies on binding properties of thyroid hormones with prealbumin-2 revealed that it has a single high affinity site and three low affinity sites. 4. The occurrence of three carrier proteins for thyroid hormones, thyroxine-binding globulin, prealbumin-2 and albumin has been demonstrated. However, the chicken thyroxine-binding globulin differs from human thyroxine-binding globulin by being relatively less acidic and occurring at a two-fold lower concentration. But the thyroid hormone binding parameters are comparable. 5. Highly sensitive methods were developed for determination of T4 binding capacities of the various proteins and plasma level of total T4 by fractionation of carrier proteins and further quantitatively employing in electrophoresis and equilibrium dialysis. 6. The thyroxine-binding proteins were found to be of two types, one (viz., thyroxine-binding globulin) of great affinity but of low binding capacity, which mainly acts as reservoir of T4, and another (viz., prealbumin-2) of low affinity but of high binding capacity, which can participate predominantly in the control of the free T4 pool.  相似文献   

4.
The crystal structure of the specific carrier of retinol (retinol-binding protein, RBP) purified from chicken plasma has been determined (space group P2(1)2(1)2(1), with a=46.06(5) A, b=53.56(6) A, c=73.41(8) A, and one protein molecule in the asymmetric unit). Despite being obtained from a species phylogenetically distant from mammals, chicken holoRBP has an overall structure that closely resembles the previously determined structures of mammalian holoRBPs. The lack in chicken RBP of eight carboxy-terminal amino acid residues characteristic of mammalian RBPs does not significantly affect the protein structure. A distinctive feature of the avian protein is a better definition of the loop 63-67, close to the opening of the beta-barrel cavity accommodating the retinol molecule, which is rather disordered in the structures of mammalian RBPs.  相似文献   

5.
In order to examine potential regulatory steps in plant fatty acid biosynthesis, we have developed procedures for the analysis of the major acyl-acyl carrier protein (ACP) intermediates of this pathway. These techniques have been used to separate and identify acyl-ACPs with chain configurations ranging from 2:0 to 18:1 and to determine the relative in vivo concentrations of acyl-ACPs in spinach leaf and developing seed. In both leaf and seed as much as 60% of the total ACPs were nonesterified (free), with the remaining proportion consisting of acyl-ACP intermediates leading to the formation of palmitate, stearate, and oleate. In spinach leaf the proportions of the various acyl groups esterified to each ACP isoform were indistinguishable, indicating that these isoforms are utilized similarly in de novo fatty acid biosynthesis in vivo. However, the acyl group distribution pattern of seed ACP-II differed significantly from that of leaf ACP-II. The malonyl-ACP levels were less than the 4:0-ACP and 6:0-ACP levels in leaf, and in contrast, the malonyl-ACP-II levels in seed were approximately 3-fold higher than the 4:0-ACP-II and 6:0-ACP-II levels. In addition, the ratio of oleoyl-ACP-II (18:1) to stearoyl-ACP-II (18:0) was higher in seed than in leaf. These data suggest that the differences in acyl-ACP patterns reflect a tissue/organ-specific difference rather than an isoform-specific difference. In extracts prepared from leaf samples collected in the dark, the levels of acetyl-ACPs were approximately 5-fold higher compared to samples collected in the light. The levels of free ACPs showed an inverse response, increasing in the light and decreasing in the dark. Notably there was no concomitant increase in the malonyl-ACP levels. The most likely explanation for the major increase in acetyl-ACP levels in the dark is that light/dark control over the rate of fatty acid biosynthesis occurs at the reaction catalyzed by acetyl-CoA carboxylase.  相似文献   

6.
7.
8.
T Abe  Y Muto  N Hosoya 《Life sciences》1975,17(10):1579-1587
The immunoreactive retinol-binding protein (RBP) and prealbumin (PA) were identified in chicken embryo by the method of double immunodiffusion using antisera against purified chicken serum RBP and PA, respectively. The embryonic RBP studied by a fluorospectrophotometric analysis showed presence of vitamin A (retinol) within the molecule. The RBP and PA fractionated on a column of Sephadex G-200 had molecular weight of approximately 20,000 and 56,000, respectively. RBP and PA formed a complex with vitamin A which had a molecular weight of approximately 76,000. The developmental changes of RBP and PA in the chicken embryo were determined in the eye, brain, serum and liver by the single radial immunodiffusion. In the brain and eye, the maxima for the concentration of RBP and PA were detected at day 6 for RBP, and day 6 and day 13 for PA during development. However, these proteins were not detected in the tissues of young chicken. The concentration of the serum embryonic RBP and PA showed a maximum at day 6. With regard to the liver, the PA was observed in the embryo only at day 13, but the RBP only after hatching.  相似文献   

9.
At least four different proteins that bind retinoids could be present in a vitamin A target tissue like the skin. In order to separate cellular retinoid-binding proteins (CRBP and CRABP) from serum retinol-binding protein (RBP) and albumin, a one-step procedure was devised. The technique is based on slab polyacrylamide gel electrophoresis (PAGE) of the extracted proteins incubated with tritiated retinoids. The procedure was used to study binding proteins in the skin. The results show that epidermal extracts (the epithelial part of the skin) contain no RBP activities whereas dermal extracts (the mesenchymal part of the skin) contain 1.6 +/- 0.81 pmol/mg protein of RBP. This technique further showed higher levels of CRABP in both epidermal (9.05 +/- 1.16 pmol/mg protein) and dermal (1.5 +/- 0.54 pmol/mg protein) extracts than those previously determined by other less specific techniques. On the other hand CRBP levels were found to be lower in the two tissues (epidermis 0.2 +/- 0.1 pmol/mg and dermis 0.12 +/- 0.05 pmol/mg protein). New conditions to measure specifically CRABP with the charcoal/dextran technique could be developed and analyzed by the PAGE technique; a dissociation constant of 13.7 nM was then calculated for epidermal CRABP. This PAGE technique appears to be the most appropriate method for the study of retinoid-binding proteins including RBP in human skin.  相似文献   

10.
Human plasma retinol-binding protein has been purified to homogeneity by a simple method that requires an ammonium sulfate fractionation, a hydrophobic interaction chromatography on phenyl-Sepharose, which dissociates the complex between retinol-binding protein and its carrier, transthyretin, and a gel filtration on Sephadex G-50. The yield of pure protein is comparable or higher than that obtained with the more complex procedures previously reported.  相似文献   

11.
12.
13.
14.
Steroid regulation of retinol-binding protein in the ovine oviduct   总被引:5,自引:0,他引:5  
Two studies were conducted to identify retinol-binding protein (RBP) expression in the ovine oviduct and to determine the role of ovarian steroids in its regulation. Ewes were salpingectomized on Days 1, 5, or 10 of their respective estrous cycles, and oviducts were homogenized for RNA analysis, fixed for immunocytochemistry (ICC), or cultured for 24 h for protein analysis. ICC localized RBP to the epithelium of all oviducts. RBP synthesis was demonstrated by immunoprecipitation of radiolabeled RBP from the medium of oviductal explant cultures. Explant culture medium from oviducts harvested on Day 1 contained significantly more RBP than medium from oviducts collected on Days 5 or 10. Slot-blot analysis demonstrated that steady-state RBP mRNA levels were significantly higher on Day 1 than Day 5 or 10. In the second experiment, ovariectomized ewes were treated with estradiol-17beta (E2), progesterone (P4), E2+P4 (E2+P4), or vehicle control, and oviducts were analyzed as above. P4 alone or in combination with E2 significantly reduced steady-state RBP mRNA levels compared to those in E2-treated animals. Oviductal explants from E2- and E2+P4-treated animals released 3- to 5-fold more RBP into the medium than control and P4 treatments as determined by ELISA. RBP synthesis of metabolically labeled RBP was increased by E2 and E2+P4 treatments. This study demonstrates that P4 applied on an estradiol background negatively regulates RBP gene expression in the oviduct whereas estradiol appears to stimulate RBP synthesis and secretion.  相似文献   

15.
16.
Immunocytochemical studies were carried out to examine the subcellular localization of plasma retinol-binding protein (RBP) in rat liver. The studies used normal, retinol-deficient, and retinol-repleted retinol-deficient rats with or without colchicine pretreatment. Affinity-purified monomeric Fab' fragments from the IgG fraction of rabbit anti-rat RBP were conjugated to horseradish peroxidase. This conjugate effectively penetrated into tissue sections and enabled RBP to be localized by high resolution immunoelectron microscopy. In the normal liver parenchymal cell, RBP was found to be localized in the synthetic and secretory structures including endoplasmic reticulum (ER), Golgi complex (GC), and secretory vesicles. With the method used, significant localization of RBP was not observed in hepatic cells other than parenchymal cells. The distribution of RBP-positive areas within parenchymal cells changed markedly with retinol depletion. Thus, a heavy accumulation of RBP in the ER, accompanied by a marked decrease of the RBP-positive GC and secretory vesicles, was demonstrated in liver parenchymal cells from retinol-deficient rats. After repletion of deficient rats with retinol, the RBP that accumulated in the ER appeared to move rapidly from the ER through GC and secretory vesicles to the cell surface. Pretreatment with colchicine led to marked increase in RBP-positive secretory vesicles in retinol-repleted rat liver parenchymal cells. The results reported here demonstrate that the specific block in hepatic RBP secretion seen in retinol deficiency involves an inhibition of the movement of RBP from the ER to the GC in the parenchymal cell.  相似文献   

17.
Retinol bound to cellular retinol-binding protein (CRBP) was available for esterification by liver microsomes in the absence of exogenous acyl donors. Moreover, exogenous acyl-CoA gave little or no stimulation of ester production over what was observed with the endogenous acyl donor. In contrast, unbound retinol was esterified in an acyl-CoA-dependent reaction. The presence of two different enzyme activities, acyl-CoA-dependent and -independent, was demonstrated by differential sensitivities to several enzyme inhibitors. The enzyme reaction with retinol-CRBP and endogenous acyl donor produced retinyl esters normally found in vivo in liver. In addition, rates of esterification with this system were sufficient to maintain liver stores. Liver also contains cellular retinol-binding protein, type II (CRBP(II] during the perinatal period. Radioimmunoassay revealed highest levels of CRBP(II) in liver 3-4 days after birth. Examination of retinol esterification by microsomes from the liver of 3-day-old rats revealed a retinyl ester synthase activity with lower Km and higher Vmax than that found in the adult. The activity could use either retinol-CRBP or retinol-CRBP(II) and an endogenous acyl donor. The microsomes from 3-day-old liver had greater esterifying ability than microsomes from adult liver, perhaps due to the presence of two retinyl ester synthase enzymes.  相似文献   

18.
A retinol-binding protein and prealbumin both in the homogeneous state are isolated from human blood serum. Immunization of rabbits is used to obtain antibodies against the retinol-binding protein; the highly specific method is developed for quantitative determination of the content of retinol-binding protein in human blood. The method may be widely applied in the biochemical and clinical practice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号