首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mucosally active vaccine adjuvants that will prime a full range of local and systemic immune responses against defined antigenic epitopes are much needed. Cholera toxin and lipophilic immune stimulating complexes (ISCOMS) containing Quil A can both act as adjuvants for orally administered Ags, possibly by targeting different APCs. Recently, we have been successful in separating the adjuvant and toxic effects of cholera toxin by constructing a gene fusion protein, CTA1-DD, that combines the enzymatically active CTA1-subunit with a B cell-targeting moiety, D, derived from Staphylococcus aureus protein A. Here we have extended this work by combining CTA1-DD with ISCOMS, which normally target dendritic cells and/or macrophages. ISCOMS containing a fusion protein comprising the OVA(323-339) peptide epitope linked to CTA1-DD were highly immunogenic when given in nanogram doses by the s.c., oral, or nasal routes, inducing a wide range of T cell-dependent immune responses. In contrast, ISCOMS containing the enzymatically inactive CTA1-R7K-DD mutant protein were much less effective, indicating that at least part of the activity of the combined vector requires the ADP-ribosylating property of CTA1. No toxicity was observed by any route. To our knowledge, this is the first report on the successful combination of two mechanistically different principles of adjuvant action. We conclude that rationally designed vectors consisting of CTA1-DD and ISCOMS may provide a novel strategy for the generation of potent and safe mucosal vaccines.  相似文献   

2.
The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mucosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4(+) T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector.  相似文献   

3.
Although highly effective, the use of GM1-receptor binding holotoxins as nasal mucosal adjuvants has recently been cautioned due to the risk for their accumulation in the brain and other nervous tissues. Therefore we have explored the efficacy of the CTA1-DD adjuvant for its ability to enhance nasal immune responses in mice. We found that despite the lack of a mucosal binding element, the B cell-targeted CTA1-DD molecule was an equally strong adjuvant as cholera toxin (CT). The potency of CTA1-DD was not a result of endotoxin contamination because more than a 50-fold higher dose of LPS was needed to achieve a similar enhancement. Moreover, the adjuvant effect was TLR4-independent and absent in mutant CTA1-E112K-DD, lacking enzymatic activity. The CTA1-DD adjuvant augmented germinal center formations and T cell priming in the draining lymph nodes, and contrary to CT, promoted a balanced Th1/Th2 response with little effect on IgE Ab production. CTA1-DD did not induce inflammatory changes in the nasal mucosa, and most importantly did not bind to or accumulate in the nervous tissues of the olfactory bulb, whereas CT bound avidly to the nervous tissues. We believe that the nontoxic CTA1-DD adjuvant is an attractive solution to the current dilemma between efficacy and toxicity encountered in CT-holotoxin adjuvant or Escherichia coli heat-labile toxin-holotoxin adjuvant strategies and provides a safe and promising candidate to be included in future vaccines for intranasal administration.  相似文献   

4.
A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.  相似文献   

5.
We recently developed a novel immunomodulating gene fusion protein, CTA1-DD, that combines the ADP-ribosylating ability of cholera toxin (CT) with a dimer of an Ig-binding fragment, D, of Staphylococcus aureus protein A. The CTA1-DD adjuvant was found to be nontoxic and greatly augmented T cell-dependent responses to soluble protein Ags after systemic as well as mucosal immunizations. Here we show that CTA1-DD does not appear to form immune complexes or bind to soluble Ig following injections, but, rather, it binds directly to B cells of all isotypes, including naive IgD+ cells. No binding was observed to macrophages or dendritic cells. Immunizations in FcepsilonR (common FcRgamma-chain)- and FcgammaRII-deficient mice demonstrated that CTA1-DD exerted unaltered enhancing effects, indicating that FcgammaR-expressing cells are not required for the adjuvant function. Whereas CT failed to augment Ab responses to high m.w. dextran B512 in athymic mice, CTA1-DD was highly efficient, demonstrating that T cell-independent responses were also enhanced by this adjuvant. In normal mice both CT and CTA1-DD, but not the enzymatically inactive CTA1-R7K-DD mutant, were efficient enhancers of T cell-dependent as well as T cell-independent responses, and both promoted germinal center formation following immunizations. Although CT augmented apoptosis in Ag receptor-activated B cells, CTA1-DD strongly counteracted apoptosis by inducing Bcl-2 in a dose-dependent manner, a mechanism that was independent of the CD19 coreceptor. However, in the presence of CD40 stimulation, apoptosis was low and unaffected by CT, suggesting that the adjuvant effect of CT is dependent on the presence of activated CD40 ligand-expressing T cells.  相似文献   

6.
Targeted vaccine adjuvants based on modified cholera toxin   总被引:2,自引:0,他引:2  
The present review describes immunomodulation with targeted adjuvants that will allow for the development of efficacious mucosal vaccines. We have studied cholera toxin (CT) and derivatives thereof, to rationally design vaccine adjuvant vectors that are both highly efficacious as well as safe and non-toxic. Two strategies were exploited; the first using CT or the enzymatically inactive receptor-binding B-subunit of CT (CTB) and the second, using CTA1 or an enzymatically inactive mutant CTA1R7K., that was linked, in a fusion protein, to the B-cell targeting moiety, DD, from Staphylococcus areus proteinA. Our studies provide compelling evidence that delivery of Ag in the absence of ADP-ribosylation can promote tolerance, whereas, ADP-ribosyltransferase-active conjugates, prevent tolerance but induce IgA immunity. Our analysis revealed unique subsets of mucosal and systemic DC that appeared to be responsible for the ADP-ribosyltransferase sensitive dichotomy between tolerance and IgA immunity. Whether targeting of B cells suffice for tolerance-induction or requires participation of DCs, is at present an unresolved issue. Nevertheless, enzymatic modulation differentiates and matures the DC to promote CD4 T cell help for IgA B cell development. Ag-presentation in the absence of enzyme, as seen with CTA1R7K-DD, expands specific T cells to a similar extent as enzymatically active CTA1-DD, but fails to recruit help for germinal center expansion of activated B cells. We have given special attention to the genes that adjuvants turn on using Affymetrix technology. In particular, modulation of the expression of co-stimulatory molecules on the targeted APC; CD80, CD86, CD83 and B7RP-1, play important roles for the effect of the ADP-ribosylating CTA1-based adjuvants for the development of tolerance or active IgA immunity.  相似文献   

7.
A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.  相似文献   

8.
Many new vaccines under development consist of rationally designed recombinant proteins that are relatively poor immunogens unless combined with potent adjuvants. There is only one adjuvant in common use in the U.S., aluminum phosphate or hydroxide (e.g. alum). This adjuvant, however, has significant limitations, particularly regarding the generation of strong cell-mediated (T-cell) immune responses. A novel adjuvant, JVRS-100, composed of cationic liposome–DNA complexes (CLDC) has been evaluated for immune enhancing activity. The JVRS-100 adjuvant has been shown to elicit robust immune responses compared to CpG oligonucleotides, alum, and MPL adjuvants, and efficiently enhances both humoral and cellular immune responses. Safety has been evaluated in preclinical studies, and the adjuvant is now in early-stage clinical development. One application of this novel adjuvant is to augment the immune responses to recombinant subunit antigens, which are often poorly immunogenic. The JVRS-100 adjuvant, when combined with a recombinant influenza hemagglutinin (H1), elicited increased specific antibody and T-cell responses in mice. Single-dose vaccination and prime/boost vaccinations with JVRS-100-H1 were both shown to be protective (i.e., survival, reduced weight loss) following H1N1 (PR/8/34) virus challenge. Enhanced immunological responses could be critically important for improved efficacy and dose-sparing of a recombinant influenza vaccine.  相似文献   

9.
Yue Y  Xu W  Xiong S 《DNA and cell biology》2012,31(4):479-488
Induction of potent mucosal immune response is a goal of current vaccine strategies against mucus-infectious pathogens such as Coxsackievirus B3 type (CVB3). We previously showed that administration of lymphotactin (LTN) as an adjuvant could enhance the specific immune responses against a mucosal gene vaccine, chitosan-pVP1, against CVB3. To optimize the coadministration mode of the mucosal adjuvant, we compared the mucosal immune responses induced by chitosan-DNA vaccine with different combinations of the target VP1 antigen gene and the adjuvant LTN gene. The two genes were either cloned in separate vectors or coexpressed as a fusion or bicistron protein in the same vector before encapsulation in chitosan nanoparticles. Four doses of various adjuvant-combined chitosan-DNA were intranasally administrated to mice before challenge with CVB3. The results indicated that chitosan-formulated pVP1-LTN fusion plasmid exhibited very weak improvement of CVB3-specific immune responses. Although the bicistronic coexpression of LTN with VP1 was expected to be powerful, this combination had enhanced effects on serum IgG and systemic T cell immune responses, but not on mucosal T cell immunity. Coimmunization with VP1 and LTN as separate chitosan-DNA formulation remarkably enhanced antibody and T cell immune responses both in systemic and mucosal immune compartments, leading to the most desirable preventive effect on viral myocarditis. Taken together, how the adjuvant is combined with the target antigen has a strong influence on the mucosal immune responses induced by mucosal DNA vaccines.  相似文献   

10.
Mucosal immunization with soluble protein Ag alone may induce Ag-specific tolerance, whereas mucosal immunization with Ag in the presence of a mucosal adjuvant may induce Ag-specific systemic and mucosal humoral and cell-mediated immune responses. The most widely used and studied mucosal adjuvant is cholera toxin (CT). Although the mechanism of adjuvanticity of CT is not completely understood, it is known that CT induces mucosal epithelial cells to produce the proinflammatory cytokines IL-1, IL-6, and IL-8 and up-regulates macrophage production of IL-1 and the costimulatory molecule B7.2. Because IL-1 may duplicate many of the activities of CT, we evaluated IL-1alpha and IL-1beta for their ability to serve as mucosal adjuvants when intranasally administered with soluble protein Ags. IL-1alpha and IL-1beta were as effective as CT for the induction of Ag-specific serum IgG, vaginal IgG and IgA, systemic delayed-type hypersensitivity, and lymphocyte proliferative responses when intranasally administered with soluble protein Ag. Our results indicate that IL-1alpha and IL-1beta may be useful as mucosal vaccine adjuvants. Such an adjuvant may be useful, and possibly required, for vaccine-mediated protection against pathogens that infect via the mucosal surfaces of the host such as HIV.  相似文献   

11.
TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant   总被引:1,自引:0,他引:1  
The identification of cytokine adjuvants capable of inducing an efficient mucosal immune response against viral pathogens has been long anticipated. Here, we attempted to identify the potential of tumor necrosis factor superfamily (TNFS) cytokines to function as mucosal vaccine adjuvants. Sixteen different TNFS cytokines were used to screen mucosal vaccine adjuvants, after which their immune responses were compared. Among the TNFS cytokines, intranasal immunization with OVA plus APRIL, TL1A, and TNF-α exhibited stronger immune response than those immunized with OVA alone. TL1A induced the strongest immune response and augmented OVA-specific IgG and IgA responses in serum and mucosal compartments, respectively. The OVA-specific immune response of TL1A was characterized by high levels of serum IgG1 and increased production of IL-4 and IL-5 from splenocytes of immunized mice, suggesting that TL1A might induce Th2-type responses. These findings indicate that TL1A has the most potential as a mucosal adjuvant among the TNFS cytokines.  相似文献   

12.
The ability of enterotoxin-based mucosal adjuvants to induce CD8+ MHC class I-restricted CTL responses to a codelivered bystander Ag was examined. Escherichia coli heat-labile toxin (LT), or derivatives of LT carrying mutations in the A subunit (LTR72, LTK63), were tested in parallel with cholera toxin (CT) or a fusion protein consisting of the A1 subunit of CT fused to the Ig binding domain of Staphylococcus aureus protein A (called CTA1-DD). Intranasal (i.n.) immunization of C57BL/6 mice with CT, CTA1-DD, LT, LTR72, LTK63, but not rLT-B, elicited MHC class I-restricted CD8+ T cell responses to coadministered OVA or the OVA CTL peptide SIINFEKL (OVA257-264). CT, LT, and LTR72 also induced CTL responses to OVA after s.c. or oral coimmunization whereas LTK63 only activated responses after s.c. coimmunization. rLT-B was unable to adjuvant CTL responses to OVA or OVA257-264 administered by any route. Mice treated with an anti-CD4 mAb to deplete CD4+ T cells mounted significant OVA-specific CTL responses after i.n. coadministration of LT with OVA or OVA257-264. Both 51Cr release assays and IFN-gamma enzyme-linked immunospot assays indicated that IFN-gamma-/- and IL-12 p40-/- gene knockout mice developed CTL responses equivalent to those detected in normal C57BL/6 mice. The results highlight the versatility of toxin-based adjuvants and suggest that LT potentiates CTL responses independently of IL-12 and IFN-gamma and probably by a mechanism unrelated to cross-priming.  相似文献   

13.
Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ~36 wk, but <15 wk after Ribi or Alum. A CTA1-DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.  相似文献   

14.
为研制广谱性禽流感口服疫苗,将4种禽流感病毒特异的基质蛋白2胞外区(matrix protein 2 ectodomain,M2e)多肽与黏膜免疫佐剂CTA1-DD串联,原核表达并纯化CTA1DD-AVI4M2e融合蛋白。以200 μg融合蛋白CTA1DD-AVI4M2e口服免疫BALB/c小鼠,结果显示实验组肠液IgA抗体效价和血清IgG抗体效价比对照组显著升高,血清中特异性IgG抗体效价达约360倍。分割的3段肠样中:第1段浸出液IgA抗体效价约为360倍,第2段约为120倍,第3段约为 9 720 倍。结果表明,本研究制备的CTA1DD-AVI4M2e具有显著口服免疫效果,为后续研究提供了基础。  相似文献   

15.
Severe Acute Respiratory Syndrome (SARS) is a deadly infectious disease caused by SARS Coronavirus (SARS-CoV). Inactivated SARS-CoV has been explored as a vaccine against SARS-CoV. However, safe and potent adjuvants, especially with more efficient and economical needle-free vaccination are always needed more urgently in a pandemic. The development of a safe and effective mucosal adjuvant and vaccine for prevention of emergent infectious diseases such as SARS will be an important advancement. PIKA, a stabilized derivative of Poly (I:C), was previously reported to be safe and potent as adjuvant in mouse models. In the present study, we demonstrated that the intraperitoneal and intranasal co-administration of inactivated SARS-CoV vaccine together with this improved Poly (I:C) derivative induced strong anti-SARS-CoV mucosal and systemic humoral immune responses with neutralizing activity against pseudotyped virus. Although intraperitoneal immunization of inactivated SARS-CoV vaccine alone could induce a certain level of neutralizing activity in serum as well as in mucosal sites, co-administration of inactivated SARS-CoV vaccine with PIKA as adjuvant could induce a much higher neutralizing activity. When intranasal immunization was used, PIKA was obligatorily for inducing neutralizing activity in serum as well as in mucosal sites and was correlated with both mucosal IgA and mucosal IgG response. Overall, PIKA could be a good mucosal adjuvant candidate for inactivated SARS-CoV vaccine for use in possible future pandemic.  相似文献   

16.
Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs (CpG ODN) are potent adjuvants to protein antigens administered by parenteral or mucosal routes to BALB/c mice. To date, there have been no studies using combined parenteral/mucosal approaches with CpG DNA as adjuvant. In this study we evaluated different parenteral prime-mucosal boost and mucosal prime-parenteral boost strategies using hepatitis B surface antigen (HBsAg) alone or with different adjuvants: aluminum hydroxide (alum), cholera toxin (CT), CpG ODN. In addition, since CpG ODN has previously been shown to act synergistically with other adjuvants after parenteral or mucosal delivery, we also evaluated adjuvant combinations: alum+CpG ODN and CT+CpG ODN. The effects of adjuvant and administration strategy on systemic and mucosal humoral responses were measured, as well as cell-mediated immune responses (cytotoxic T lymphocyte activity). These results were compared to parenteral only or mucosal only strategies. Our findings demonstrate that parenteral immunization can prime for mucosal responses even when different lymph nodes were being targeted. HBsAg-specific immune responses (IgG in plasma, cytotoxic T lymphocytes) induced by parenteral prime could all be significantly enhanced by mucosal boosting and despite the fact that intramuscular immunization alone could not induce mucosal IgA, it could prime for a subsequent mucosal boost. In addition, the presence of adjuvant at time of boosting could influence the nature of subsequent immune responses (Th1 vs. Th2). Mice primed intranasally could have their systemic immune responses boosted with a parenteral administration and it was also possible to enhance mucosal responses induced by intranasal prime with an intramuscular boost.  相似文献   

17.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

18.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

19.
Protein engineering of the cholera toxin A1 subunit (CTA1) fused to a dimer of the Ig-binding D-region of Staphylococcus aureus protein A (DD) was employed to investigate the effect of specific amino acid changes on solubility, stability, enzymatic activity and capacity to act as an adjuvant in vivo. A series of CTA1-DD analogues were selected by a rational modeling approach, in which surface-exposed hydrophobic amino acids of CTA1 were exchanged for hydrophilic counterparts modeled for best structural fit. Of six different mutants initially produced, two analogues, CTA1Phe132Ser-DD and CTA1Pro185Gln-DD, were demonstrated to have 50 and 70% increased solubility, respectively, at neutral pH. The double mutant CTA1Phe132Ser/Pro185Gln-DD was at least threefold more soluble, demonstrating an additive effect of the two mutations. Only the Phe132Ser analogue retained full biological activity and stability compared with the native CTA1-DD fusion protein. Two mutants, Pro185Gln and Phe31His mutations, exhibited unaltered ADP-ribosyltransferase activity in vitro, but demonstrated markedly reduced adjuvant function. Since the Pro185 and Phe31 amino acids are located in close vicinity on the distal side of the molecule relative to the enzymatically active cleft, it is conceivable that this region is involved in mediating a biological function, separate from the enzymatic activity but intrinsic to the adjuvant activity of CTA1.  相似文献   

20.
The in vivo mechanisms of action of most vaccine adjuvants are poorly understood. In this study, we present data in mice that reveal a series of critical interactions between the cholera toxin (CT) adjuvant and the dendritic cells (DC) of the splenic marginal zone (MZ) that lead to effective priming of an immune response. For the first time, we have followed adjuvant targeting of MZ DC in vivo. We used CT-conjugated OVA and found that the Ag selectively accumulated in MZ DC following i.v. injections. The uptake of Ag into DC was GM1 ganglioside receptor dependent and mediated by the B subunit of CT (CTB). The targeted MZ DC were quite unique in their phenotype: CD11c(+), CD8alpha(-), CD11b(-), B220(-), and expressing intermediate or low levels of MHC class II and DEC205. Whereas CTB only delivered the Ag to MZ DC, the ADP-ribosyltransferase activity of CT was required for the maturation and migration of DC to the T cell zone, where these cells distinctly up-regulated CD86, but not CD80. This interaction appeared to instruct Ag-specific CD4(+) T cells to move into the B cell follicle and strongly support germinal center formations. These events may explain why CT-conjugated Ag is substantially more immunogenic than Ag admixed with soluble CT and why CTB-conjugated Ag can tolerize immune responses when given orally or at other mucosal sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号