首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.  相似文献   

2.
A cDNA encoding the apical membrane antigen-1 (AMA-1) homologue was obtained by immunoscreening a cDNA expression library prepared from Babesia gibsoni merozoite mRNA. The complete nucleotide sequence of the gene was 2062bp. Computer analysis suggested that the sequence contains an open reading frame of 1794bp with a coding capacity of approximately 66kDa. Based on the homology analysis, this putative protein was designated as B. gibsoni AMA-1 (BgAMA-1). The BgAMA-1 gene was expressed in the Escherichia coli BL21 strain and used as the antigen in Western blotting and the enzyme-linked immunosorbent assay (ELISA). The results indicated that BgAMA-1 was recognized as an immunodominant antigen by the host immune system and that it induced a strong antibody response only in chronic B. gibsoni infection in dogs; however, the antibody response could not be detected in the early infection stage (within 15 days). This phenomenon might be explained by the limited stimulation with the low-abundance protein in the early infection stage. This result shows that BgAMA-1 is a new member of the AMA-1 family and that its immune response is characteristic of canine B. gibsoni infection.  相似文献   

3.
Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.  相似文献   

4.
Malaria parasites exhibit sequence diversity for a number of stage specific antigens. Several studies have proved that apical membrane antigen-1 (AMA-1) is an effective target for eliciting a protective immune response in humans and other experimental animals. We have investigated the sequence variation in Plasmodium vivax AMA-1 (Pv AMA-1) from different Indian isolates. This is the first study of its kind for the nearly full length Pv AMA-1 from India. Our analysis reveals greater degree of genetic diversity in Pv AMA-1 than reported so far and identifies five novel haplotypes. This is significant to establish the antigenic repertoire of isolates in a malaria endemic country like India.  相似文献   

5.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

6.
The apical membrane antigen-1 (AMA-1) of Plasmodium falciparum is a prime malaria asexual blood-stage vaccine candidate. Antigenic variation is one of the main obstacles in the development of a universal effective malaria vaccine. The extracellular region of P. falciparum AMA-1 (PfAMA-1) consists of three domains (I-III), of which the domain I is the most diverse region of this antigen. The objective of our study was to investigate and analyze the extent of genetic diversity and the effectiveness of natural selection at the AMA-1 domain I of P. falciparum in isolates from Iran. A fragment of ama-1 gene spanning domain I was amplified by nested PCR from 48 P. falciparum isolates collected from two major malaria endemic areas of Iran during 2009 to August 2010 and sequenced. Genetic polymorphism and statistical analyses were performed using DnaSP and MEGA software packages. Analysis of intrapopulation diversity revealed relatively high nucleotide and haplotype diversity at the PfAMA-1 domain I of Iranian isolates. Neutrality tests provided strong evidence of positive natural selection acting on the sequenced gene region. The findings also demonstrated that, in addition to natural selection, intragenic recombination may contribute to the diversity observed at the domain I. The results obtained will have significant implications in the design and the development of an AMA-1-based vaccine against falciparum malaria.  相似文献   

7.
Oligoadenylate synthetases (OAS) are interferon-induced enzymes that participate in the first line of defense against a wide range of viral infection in animals. Upon activation by viral double-stranded RNA, OAS synthesizes (2-5) oligoadenylates, which activate RNase L, leading to the nonspecific degradation of cellular and viral RNA. Some association studies in humans suggest that variation at one of the OAS genes, OAS1, could be influencing host susceptibility to viral infection. We assessed the diversity of OAS1 in hominoid primates with a focus on chimpanzees. We found that the OAS1 gene is extremely polymorphic in Central African chimpanzee and exhibits levels of silent and replacement diversity much higher than neutral regions of the chimpanzee genome. This level of variation strongly suggests that balancing selection is acting on OAS1, and indeed, this conclusion was validated by several tests of neutrality. We further demonstrated that balancing selection has been acting at this locus since the split between chimpanzees, humans, and gorillas (~8.6 Ma) and caused the persistence of two deeply divergent allelic lineages in Central African chimpanzees. These two groups of OAS1 alleles differ by a large number of amino acids (a.a.), including several a.a. putatively involved in RNA binding. It is therefore very likely that variation at the OAS1 locus affects the innate immune response of individuals to specific viral infection. Our data strongly suggest that interactions between viral RNA and OAS1 are responsible for the maintenance of ancestral polymorphisms at this locus for at least 13.2 My.  相似文献   

8.
The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context - which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans - is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.  相似文献   

9.
Plasmodium vivax apical membrane antigen 1 (PvAMA-1) is an important malaria vaccine candidate. We present the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Sri Lanka. In contrast to what has been observed at the AMA-1 locus of Plasmodium falciparum, the signature of diversifying selection is seen most strongly in Domain II of PvAMA-1, indicating that the different domains in each species may be subject to varying selective pressures and functional constraints. We also find that recombination plays an important role in generating haplotype diversity at this locus, even in a region of low endemicity such as Sri Lanka. Mapping of diversity and recombination hotspots onto a 3-dimensional structural model of the protein indicates that one surface of the molecule may be particularly likely to bear epitopes for antibody recognition. Regions of this surface that show constrained variability may prove to be promising vaccine targets.  相似文献   

10.
A A Escalante  A A Lal  F J Ayala 《Genetics》1998,149(1):189-202
We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25.  相似文献   

11.
The capsule (cps) locus of Streptococcus pneumoniae is flanked by the pbp2x and pbp1a genes, coding for penicillin-binding proteins, enzymes involved in cell wall synthesis that are targets for beta-lactams. This linkage suggested to us that selection for beta-lactam resistance might coselect for capsular transformants. The recombination event would then involve PBP genes, as well as the cps operon, and would change both the serotype and the resistance profile of the strain. We transformed beta-lactam-susceptible strain TIGR4 by using whole genomic DNA extracted from multidrug-resistant strain GA71, a serotype 19F variant of pneumococcal clone Spain(23F)-1, and selected beta-lactam-resistant transformants. Smooth colonies appearing on selective plates were subcultured, serotyped by the Quellung reaction, and genotyped to confirm the presence of the GA71 pbp2x-cps19-pbp1a locus in the TIGR4 genetic background by restriction fragment length polymorphism analysis of the whole locus and its flanking regions. The results showed that a new serotype, combined with resistance to beta-lactams, could emerge in a susceptible strain via a single transformation event. Quantitative analysis showed that transfer of the cps locus had occurred at an elevated rate in beta-lactam-selected transformants. This suggests that in natural settings selection by host immunity and selection by antibiotics may be interrelated because of "hitchhiking" effects due to linkage of resistance determinants and the capsule locus.  相似文献   

12.
The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII. Previously, we described that Plasmodium vivax AMA-1 (PvAMA-1) ectodomain is highly immunogenic in natural human infections. Here, we expressed each domain, separately or in combination (DI-II or DII-III), as bacterial recombinant proteins to map immunodominant epitopes within the PvAMA-1 ectodomain. IgG recognition was assessed by ELISA using sera of P. vivax-infected individuals collected from endemic regions of Brazil or antibodies raised in immunized mice. The frequencies of responders to recombinant proteins containing the DII were higher than the others and similar to the ones observed against the PvAMA-1 ectodomain. Moreover, ELISA inhibition assays using the PvAMA-1 ectodomain as substrate revealed the presence of many common epitopes within DI-II that are recognized by human immune antibodies. Finally, immunization of mice with the PvAMA-1 ectodomain induced high levels of antibodies predominantly to DI-II. Together, our results indicate that DII is particularly immunogenic during natural human infections, thus indicating that this region could be used as part of an experimental sub-unit vaccine to prevent vivax malaria.  相似文献   

13.
Malaria parasites invade erythrocytes in a process mediated by a series of molecular interactions. Invasion of human erythrocytes by Plasmodium vivax is dependent upon the presence of a single receptor, but P. falciparum, as well as some other species, exhibits the ability to utilize multiple alternative invasion pathways. Conserved cysteine-rich domains play important roles at critical times during this invasion process and at other stages in the life cycle of malaria parasites. Duffy-binding-like (DBL) domains, expressed as a part of the erythrocyte-binding proteins (DBL-EBP), are such essential cysteine-rich ligands that recognize specific host cell surface receptors. DBL-EBP, which are products of the erythrocyte-binding-like (ebl) gene family, act as critical determinants of erythrocyte specificity and are the best-defined ligands from invasive stages of malaria parasites. The ebl genes include the P. falciparum erythrocyte-binding antigen-175 (EBA-175) and P. vivax Duffy-binding protein. DBL domains also mediate cytoadherence as a part of the variant erythrocytic membrane protein-1 (PfEMP-1) antigens expressed from var genes on the surface of P. falciparum-infected erythrocytes. A paralogue of the ebl family is the malarial ligand MAEBL, which has a chimeric structure where the DBL domain is functionally replaced with a distinct cysteine-rich erythrocyte-binding domain with similarity to the apical membrane antigen-1 (AMA-1) ligand domain. The Plasmodium AMA-1 ligand domain, which encompasses the extracellular cysteine domains 1 and 2 and is well conserved in a Toxoplasma gondii AMA-1, has erythrocyte-binding activity distinct from that of MAEBL. These important families of Plasmodium molecules (DBL-EBP, PfEMP-1, MAEBL, AMA-1) are interrelated through the MAEBL. Because MAEBL and the other ebl products have the characteristics expected of homologous ligands involved in equivalent alternative invasion pathways to each other, we sought to better understand their roles during invasion by determining their relative origins in the Plasmodium genome. An analysis of their multiple cysteine-rich domains permitted a unique insight into the evolutionary development of PLASMODIUM: Our data indicate that maebl, ama-1, and ebl genes have ancient origins which predate Plasmodium speciation. The maebl evolved as a single locus, including its unique chimeric structure, in each Plasmodium species, in parallel with the ama-1 and the ebl genes families. The ancient character of maebl, along with its different expression characteristics suggests that MAEBL is unique and does not play an alternative role in invasion to ebl products such as EBA-175. The multiple P. falciparum ebl paralogues that express DBL domains, which have occurred by duplication and diversification, potentially do provide multiple functionally equivalent ligands to EBA-175 for alternative invasion pathways.  相似文献   

14.
A number of stage-specific antigens have been characterized for vaccine development against Plasmodium falciparum malaria. This study presents a comprehensive analysis of the sequence polymorphism in Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) in population samples from the eastern and western parts of India. This is the first study of its kind for the nearly full length PfAMA-1 gene from these regions in India. Our observations confirmed that sequence diversity of PfAMA-1 confines only to point mutations and shows 4-8% variation as compared to the prototypes. As opposed to the previous studies on PfAMA-1, our study revealed a greater degree of polymorphism in the Domain II region of PfAMA-1 protein, though signature for diversifying selection is seen throughout the gene. Our present investigation also indicates a very high degree of variation in the reported T- and B-cell epitopes of PfAMA-1. Few noteworthy and unique observations made in this study are the substitution of Cysteine residues responsible for the disulfide bond structure of the protein and the presence of premature termination after 595 amino acids in 3 of the 13 isolates under consideration. These crucial findings add new perspectives to the future of AMA-1 research and could have major implications in establishing AMA-1 as a vaccine candidate.  相似文献   

15.
Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290–307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies.  相似文献   

16.
The host-specific toxin ToxA produced by the wheat pathogens Pyrenophora tritici-repentis and Phaeosphaeria nodorum interacts with the product of the dominant plant gene Tsn1 to induce necrosis. The ToxA gene is thought to have been acquired by Py. tritici-repentis from Ph. nodorum through a recent horizontal gene transfer event. PCR and sequence analysis indicate that the level of ToxA variation, including gene deletion, in Ph. nodorum ( SnToxA ) is significantly higher than in Py. tritici-repentis ( PtrToxA ). We PCR-screened 788 isolates of Ph. nodorum originating from eight geographical regions to infer the pattern of SnToxA deletions. The frequency of deletions differed significantly among populations, ranging from 0% (Australia) to 98% (China). Sequence analysis of the SnToxA gene in 123 Ph. nodorum isolates revealed 13 distinct haplotypes. The distribution and diversity of haplotypes varied significantly among populations. The majority of SnToxA mutations were non-synonymous resulting in changes at the protein level. We applied different models of selection to infer the mode of evolution operating at the ToxA locus. Evidence for positive diversifying selection supports the hypothesis that evolution of the ToxA locus is driven by selection imposed by the host. The distribution of SnToxA alleles and deletions may reflect the distribution of different Tsn1 alleles in the corresponding host populations.  相似文献   

17.

Background

The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.

Results

We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1.

Conclusions

The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.  相似文献   

18.
Persisting viral sequences shape microbial CRISPR-based immunity   总被引:1,自引:0,他引:1  
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This 'trailer-end conservation' occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. 'Trailer-end clonality' occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining 'trailer-end conservation,' we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.  相似文献   

19.
A Plasmodium falciparum chimeric protein 2.9 (PfCP-2.9) was constructed consisting of the C-terminal regions of two leading malaria vaccine candidates, domain III of apical membrane ag-1 (AMA-1) and 19-kDa C-terminal fragment of the merozoite surface protein 1 (MSP1). The PfCP-2.9 was produced by Pichia pastoris in secreted form with a yield of 2600 mg/L and approximately 1 g/L of final product was obtained from a three-step purification process. Analysis of conformational properties of the chimeric protein showed that all six conformational mAbs interacted with the recombinant protein were reduction-sensitive, indicating that fusion of the two cysteine-rich proteins retains critical conformational epitopes. PfCP-2.9 was found to be highly immunogenic in rabbits as well as in rhesus monkeys (Macaca mulatta). The chimeric protein induced both anti-MSP1-19 and anti-AMA-1(III) Abs at levels 11- and 18-fold higher, respectively, than individual components did. Anti-PfCP-2.9 sera from both rabbits and rhesus monkeys almost completely inhibited in vitro growth of the P. falciparum FCC1/HN and 3D7 lines when tested at a 6.7-fold dilution. It was shown that the inhibition is dependent on the presence of Abs to the chimeric protein and their disulfide bond-dependent conformations. Moreover, the activity was mediated by a combination of growth-inhibitory Abs generated by the individual MSP1-19 and AMA-1(III) of PfCP-2.9. The combination of the extremely high yield of the protein and enhancement of its immune response provides a basis to develop an effective and affordable malaria vaccine.  相似文献   

20.
MHC polymorphism under host-pathogen coevolution   总被引:9,自引:0,他引:9  
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号