首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
It has been reported that diverse treatments which depolarize the plasma membrane of Neurospora crassa produce rapid increases in cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels. In the current study, membrane active antibiotics, which are known or putative depolarizing agents, were found to produce similar cyclic AMP increases, not only in N. crassa, but also in the distantly related fungi Saccharomyces cerevisiae and Mucor racemosus. Uncouplers of oxidative phosphorylation, which have been found to depolarize Neurospora, also produced cyclic AMP increases in all three fungi. The time course of the cyclic AMP response to these various treatments was similar in all three fungi. The fungal studies and studies on depolarized central nervous tissue suggest that cyclic AMP increases may be produced in response to plasma membrane depolarization in diverse eucaryotic cells. A model is proposed for eucaryotic microorganisms in which membrane depolarization serves as a signal of breakdown of the plasma membrane integrity. The subsequent cyclic AMP increase, in turn, may mediate cellular response to help protect the plasma membrane from chemical and mechanical threats to its integrity.  相似文献   

2.
Diverse treatments, which have been shown by Slayman, C. L. (1977) in Water Relations in Membrane Transport in Plants and Animals (Jungreis, A., Hodges, T. K., Kleinzeller, A., and Schultz, S. G., eds) pp. 69-86, Academic Press, New York, to depolarize the plasma membrane of Neurospora, increase levels of adenosine 3':5'-monophosphate (cyclic AMP) in the organism. The treatments include those producing large transport fluxes of metabolizable or nonmetabolizable compounds, rapid temperature drops, and addition of agents which uncouple oxidative phosphorylation. Severe mechanical stress, which may also act to depolarize the plasma membrane, leads to increases in cyclic AMP. The maximal depolarization appears to precede the maximal cyclic AMP levels. It is proposed that the membrane depolarization produces the increased cyclic AMP levels by stimulating the plasma membrane-bound adenylate cyclase and that cyclic AMP may be important to the maintenance of membrane integrity.  相似文献   

3.
The treatment of mycelial cells with membrane-active antibiotics, uncouplers of oxidative phosphorylation and KCl leads to a transient increase in adenosine 3',-5'-monophosphate (cyclic AMP) levels in Coprinus macrorhizus. The maximal values and duration of increase in the cyclic AMP level depended on the kind and amount of these drugs. The treatment with these drugs simultaneously resulted in a rapid increase in the phosphorylation of three cellular proteins. The levels and time course of phosphorylation of these proteins were paralleled with the increase of cyclic AMP level in response to the drugs used. Thus, the treatment of these drugs causes the transient increase of cyclic AMP level and cyclic AMP stimulates the phosphorylation of particular proteins by activating protein kinases.  相似文献   

4.
Dark grown mycelial cells of Neurospora crassa bearing mutant genes crisp-I or frost and having a decreased level of cyclic adenosine 3,5-monophosphate contained more carotenoid pigments than the cells with wild alleles of these genes. A transient decrease of the cyclic AMP occurred following photoinduction of carotenoid synthesis during its lag-period. Its intensity correlated with the increase of carotenoid pigment level due to photoinduction. No correlation in the content of cyclic guanosine 5-phosphate with both constitutive level of carotenoids and its photoinduced increase was observed.  相似文献   

5.
Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 M–3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.  相似文献   

6.
The addition of arachidonic acid at 250 μM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

7.
The addition of arachidonic acid at 250 muM to cultures of human embryo lung fibroblasts (IMR-90) increases cellular cyclic AMP levels within 5 minutes to approximately 15-fold over basal. Other unsaturated fatty acids, 11, 14, 17-eicosatrienoic, linoleic, 8, 11, 14-eicosatrienoic and oleic also cause similar rapid elevation of cellular cyclic AMP. During this time interval, no detectable conversion of the added linoleic or arachidonic acids to prostaglandin is observed. These cells produce prostaglandins at measurable concentrations in response to treatment with ascorbic acid or bradykinin. Saturated fatty acids have no influence on cyclic AMP levels in these cells. This effect of unsaturated fatty acids on cellular cyclic AMP levels varies with the cell type. For example, smooth muscle and endothelial cells obtained from the calf pulmonary artery show very little or no increase in cellular cyclic AMP upon exposure to arachidonic acid.  相似文献   

8.
The addition of menadione into the medium during cultivation ofNeurospora crassa in the dark activated its constitutive superoxide dismutase. Exposure to light not only activated superoxide dismutase and catalase, but also increased the content of neurosporaxanthin. Superoxide dismutase activity in the mixed (+/–) cultures of Blakeslea trispora synthesizing -carotene in the dark was much lower than that inNeurospora crassa. The superoxide dismutase activity and catalase activity further decreased in oxidative stress with a parallel increase in the content of -carotene. Our results indicate that neurosporaxanthin possesses photoprotective properties in Neurospora crassa. In Blakeslea trispora (+/–) fungi, -carotene acts as a major antioxidant during inactivation of enzymes that detoxify reactive oxygen species.  相似文献   

9.
Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment.  相似文献   

10.
UDPglucuronic acid and erythroascorbic acid were identified in extracts of the fungus Neurospora crassa. The concentrations of these two compounds are estimated, in growing wild type N. crassa, to be about 0.10 and 0.28 μmol/ml of cell water, respectively. The pools of these two compounds are regulated by cyclic AMP in Neurospora, both being elevated in the cr-1, adenylate cyclase deficient mutant and both being lowered by exogenous cyclic AMP. The pools of these two compounds are also elevated on nitrogen deprivation. The pools of a large number of other nucleotides are not influenced by cyclic AMP. Possible relationships between the metabolism of UDPglucuronic acid and erythroascorbic acid are discussed. It was found that exogenous cyclic AMP was much more effective in influencing cultures grown at 30–37°C than those grown at 25°C. We suggest that higher temperatures may render Neurospora more permeable to a variety of different compounds.  相似文献   

11.
Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. InE. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this low energy shock adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. InBacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. InE. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion.  相似文献   

12.
Rat glioma cells grown in culture secrete cyclic adenosine 3':5'-monophosphate (cyclic AMP) into the culture medium following stimulation by beta-agonistic catecholamines. Agents which reduced cellular ATP levels such as valinomycin, oligomycin, and uncouplers of oxidative phosphorylation, inhibited cyclic AMP efflux. Secretion of cyclic AMP was also prevented by prostaglandin A-1 and pharmacological agents including probenecid and papaverine. Of the latter agents, only papaverine reduced ATP levels. These results suggest that the transport of cyclic AMP across animal cell membranes is energy-dependent and subject to regulation.  相似文献   

13.
Strains of Neurospora crassa mutant in either of two genes, Crisp-1 (cr1) and Frost (fr), showed no increase of cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels when subjected to several treatments which produce large increases of cyclic AMP in wild-type Neurospora. Evidently, the previously reported deficiencies of adenylate cyclase in these mutants were sufficient to block the normal increases. This fact suggests that both mutants could be used to help determine which control phenomena involve cyclic AMP and to interrupt the control of established cyclic AMP-regulated functions. Earlier studies had suggested an interdependence of the cyclic AMP level and the electric potential difference across the plasma membrane of Neurospora. Present experiments, therefore, employed several strains with the cr1 mutation to test for possible roles of cyclic AMP in recovery and oscillatory behavior of the Neurospora membrane potential. The results showed all such phenomena to be normal in the adenylate cyclase-defective strains, which demonstrates that variations of cyclic AMP are not obligatorily involved in the apparent control processes. Evidence is also presented that the induction of both glucose transport system II and the alternative oxidase do not require elevated cyclic AMP levels.  相似文献   

14.
Sugars and other energy sources were found to lower intracellular concentrations of adenosine 3':5'-monophosphate (cyclic AMP) in strains of Escherichia coli and Salmonella typhimurium which were deficient for cyclic AMP phosphodiesterase. This effect required the presence of the specific transport system responsible for entry of that sugar into the cell and depended on the intracellular catabolic enzymes. Metabolizable sugars were more effective than nonmetabolizable sugars in reducing cellular cyclic AMP levels, and this reduction was blocked partially by uncouplers of oxidative phosphorylation. Electron donors such as lactate and ascorbate plus phenazine methosulfate reduced internal cyclic AMP levels in bacterial membrane vesicles which had been preloaded with the cyclic nucleotide. Uncouplers of oxidative phosphorylation, but not arsenate, blocked the energy-stimulated loss of intravesicular cyclic AMP. Employing intact cells, sugars were shown to have two primary effects on cyclic AMP metabolism: (a) they inhibited net synthesis of the cyclic nucleotide while promoting its degradation, and (b) they stimulated efflux of cyclic AMP into the extracellular fluid. While the former effect was elicited by metabolizable and nonmetabolizable sugars alike, stimulation of cyclic nucleotide excretion was only observed with metabolizable sugars. The results suggest that the extrusion of cyclic AMP from the bacterial cell is energy-dependent and is driven by an energized membrane state.  相似文献   

15.
Cyclic AMP and cyclic GMP were released into the growth medium of mycelia of Neurospora crassa wild-type strains St.L.74A and Em5297a and by white collar-1 and white collar-2 mutant strains. After growth for 6 days at 18°C, there were 2.19 (St.L.74A), 5.83 (Em5297a), 1.38 (white collar-1), and 1.10 (white collar-2) nanomoles of cyclic AMP per gram dry weight of mycelia in the growth medium. These values corresponded to concentrations of cyclic AMP of between approximately 10 and 50 nanomolar. The corresponding values for extracellular cyclic GMP were typically less than 6% of the values for cyclic AMP. Following transfer to fresh medium, cyclic AMP efflux was demonstrated for each of the strains, and the amount of cyclic AMP exported into the fresh medium was greater at 25°C than 6°C. Intracellular cyclic AMP and cyclic GMP were also measured in each of the strains. The values for cyclic AMP were in the same range as those in the literature (approximately 0.5 to 1.5 nanomoles per gram dry weight of mycelia). However, the corresponding intracellular cyclic GMP values were less than 1% of the cyclic AMP values, i.e. more than 50 times lower than the value previously reported for the St.L.74A wild-type. Transfer of mycelia after 6 days at 18°C to fresh media and incubation for 2 hours at 25°C or 6°C did not consistently affect the intracellular level of cyclic AMP or cyclic GMP in the strains examined. We could detect no change in intracellular cyclic AMP when mycelia of the St.L.74A wild-type strain were irradiated with blue light for periods of up to 3.0 hours at 18°C, or in cyclic AMP and cyclic GMP for irradiation times of up to 1 minute at 6°C. We propose that the plasma membrane of Neurospora crassa is permeable to cyclic nucleotides, and the export of cyclic nucleotides into the growth medium may be a means of regulating intracellular levels. We conclude that three factors that affect carotenogenesis in Neurospora crassa (blue light, temperature, and the white collar mutations) have no appreciable effect on the total measurable intracellular cyclic nucleotides in this organism. There was no extracellular or intracellular cyclic AMP or cyclic GMP in the crisp-1 mutant strain, which suggested either that adenylate cyclase (which is absent in crisp-1) catalyzes the synthesis of both cyclic AMP and cyclic GMP or that the crisp-1 mutation somehow results in a deficiency of two enzymes (adenylate and guanylate cyclase).  相似文献   

16.
Cyclic AMP-induced tyrosinase synthesis in Neurospora crassa   总被引:6,自引:0,他引:6  
Cyclic AMP induces the synthesis of tyrosinase in Neurospora crassa. Adenine, adenosine, 3′-AMP, 5′-AMP, and 2′,3′-cyclic AMP have no inductive effect while 8-bromocyclic AMP and dibutyryl cyclic AMP are good inducers. Caffeine and theophylline, inhibitors of cyclic AMP phosphodiesterase, also induce tyrosinase. A possible relationship between cyclic AMP induction and previously reported induction by cycloheximide is suggested.  相似文献   

17.
Pilobolus longipes spores were activated by either glucose or 6-deoxyglucose. Glucose-induced spore activation was previously shown to follow an increase in intracellular cyclic AMP. Concurrent with glucose-induced spore activation, were shifts in 6-deoxyglucose transport kinetics towards higher V max and K m values. Cyclic AMP derivatives also caused spore activation and similar changes in the kinetic parameters of 6-deoxyglucose transport. The time course of activation was paralleled by changes in transport activity. Inhibition of phosphodiesterase alone did not cause activation or induce changes in transport activity, but in combination with sub-optimal levels of either 6-deoxyglucose or cAMP derivatives, it amplified the germination signals to produce large increases in both spore activation and 6-deoxyglucose transport activity. These results support the conclusion that glucose transport in germinating spores is regulated by cAMP.Abbreviations IBMX 3-isobutyl-1-methylxanthine; monobutyryl cyclic AMP - N6 monobutyryladenosine 3:5-cyclic monophosphate - 8-bromo cyclic AMP 8-bromoadenosine 3:5-cyclic monophosphate  相似文献   

18.
Biochemical and electron microscopic evidence is presented that sideramine-free fungi form iron hydroxide polymer layers on the cell surface when grown in an iron containing medium.Iron hydroxide polymer formation on the cell surface is completely prevented in sideramine producing strains of Neurospora crassa. After feeding a sideramine-free mutant of Neurospora crassa with ornithine in order to restore the sideramine synthesis the iron hydroxide coat is gradually dissolved.The addition of excess citrate and malate to the incubation medium also prevents iron polymer adsorption, suggesting that hydroxy acids may be involved in iron supply, when sideramine-free organisms are grown in iron containing media.In order to study the interaction between iron hydroxide polymer deposition upon the cell surface and iron chelating acids in Neurospora crassa, the amount and the proportion of excreted acids was studied under various experimental conditions. Gas chromatographic analysis of the acids produced under iron deficient conditions revealed that succinate, malate and citrate were present within the cells in the early growth phase. The acids were sequentially excreted into the medium in the order succinate, malate and citrate. The amount of succinate decreased after 2 days of cultivation, whereas the amount of malate and citrate continually increased. Although citrate was present within the cells from the 1st day, excretion occurred very late, generally after the 3rd day.It is suggested that sideramine-free fungi first adsorb iron as a hydroxide polymer on the cell surface, and that it is gradually solubilized by excreted hydroxy acids such as citrate or malate. Thus high local concentrations of iron chelated by hydroxy acids provide sideramine-free fungi with a continuous iron supply.Abbreviations BSTFA N,O-Bis(trimethylsilyl)-trifluoracetamide - GC Gaschromatography - EGTA Ethylenglykol-bis(2-aminoethylether) N,N-tetraacetic acid - TMS Trimethylsilyl  相似文献   

19.
Summary Cyclic AMP (300µ m) activates phosphofructokinase from dialyzed haemolysates of mature rat erythrocytes. The main conclusions are: a) Cyclic AMP, at pH 7.1 and low concentrations of fructose-6-phosphate, is able to reverse the inhibition produced by different amounts of ATP (up to 1.5mm). b) The cyclic nucleotide is a positive allosteric effector of the enzyme as shown by the displacement of sigmoidal fructose-6-phosphate saturation curve to hyperbolic kinetics in the presence of inhibitory concentrations (1.5mm) of ATP. c) Cyclic AMP has no significant influence as deinhibitor of phosphofructokinase either at pH 7.1 and non-inhibitory levels (0.25mm) of ATP or at pH 8.1 and inhibitory (1.5mm) of non-inhibitory (0.25mm) concentrations of ATP. Similar conclusions were obtained with 300µ m AMP but not at a lower concentration (3µ m) with both nucleotides.The comparison of cyclic AMP results with those obtained under similar concentrations of AMP suggest that cyclic AMP is really only an in vitro modulator of the enzyme from rat erythrocytes, presumably at an AMP regulatory site, since non-physiological concentrations are required to act as deinhibitor.  相似文献   

20.
Several derivatives of the coprogen and ferrichrysin classes of siderophores were synthesized as potential affinity labels of the iron uptake system inNeurospora crassa. While only one of these compounds has proved useful as an affinity label, all were recognized and transported byNeurospora crassa. One derivative, chloroacetyl-ferrichrysin, proved to be an unexpectedly potent reversible inhibitor (K 1=0.4 M) of both ferrichrysin and coprogen uptake, similar to the natural siderophore, ferrirubin. The reported results provide further understanding of the steric and electronic requirements of siderophores for the iron uptake system inNeurospora crassa.Abbreviations amu atomic mass units - DMF dimethylformamide - FAB tast atom bombardment - NMR nuclear magnetic resonance - ppm parts per million - tlc thin layer chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号