首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked mental retardation (XLMR) affects 1.8 per thousand male births and is usually categorized as "syndromic" (MRXS) or "non-specific" (MRX) forms according to the presence or absence of specific signs in addition to the MR. Up to 60 genes have been implicated in XLMR and certain mutations can alternatively lead to MRXS or MRX. Indeed the extreme phenotypic and allelic heterogeneity of XLMR makes the classification of most genes difficult. Therefore, following identification of new genes, accurate retrospective clinical evaluation of patients and their families is necessary to aid the molecular diagnosis and the classification of this heterogeneous group of disorders. Analyses of the protein products corresponding to XLMR genes show a great diversity of cellular pathways involved in MR. Common mechanisms are beginning to emerge : a first group of proteins belongs to the Rho and Rab GTPase signaling pathways involved in neuronal differentiation and synaptic plasticity and a second group is related to the regulation of gene expression. In this review, we illustrate the complexity of XLMR conditions and present recent data about the FMR1, ARX and Oligophrenin 1 genes.  相似文献   

2.
Syndactyly, webbing of adjacent digits with or without bony fusion, is one of the most common hereditary limb malformations. It occurs either as an isolated abnormality or as a component of more than 300 syndromic anomalies. There are currently nine types of phenotypically diverse nonsyndromic syndactyly. Non-syndromic syndactyly is usually inherited as an autosomal dominant trait, although the more severe presenting types and subtypes may show autosomal recessive or X-linked pattern of inheritance. The phenotype appears to be not only caused by a main gene, but also dependant on genetic background and subsequent signaling pathways involved in limb formation. So far, the principal genes identified to be involved in congenital syndactyly are mainly involved in the zone of polarizing activity and sonic hedgehog pathway. This review summarizes the recent progress made in the molecular genetics, including known genes and loci responsible for non-syndromic syndactyly, and the signaling pathways those genetic factors involved in, as well as clinical features and animal models. We hope our review will contribute to the understanding of underlying pathogenesis of this complicated disorder and have implication on genetic counseling.  相似文献   

3.
Protein oxidation is a natural consequence of aerobic metabolism in cells. Oxidative modification of amino acid residues of proteins causes to lose activity or function of proteins. Organisms have thus developed pathways to remove oxidized proteins by rapid protein degradation. These pathways are important components in cellular quality control mechanisms. It has been suggested that oxidized proteins are degraded by the proteasome. However, whether ubiquitylation is necessary for the degradation of oxidized proteins remains a controversial issue. We have recently identified HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) as an E3 ligase that recognizes a protein that has been oxidized by iron. This review describes the recent progress made in understanding the ubiquitin-proteolytic pathway and the regulation of iron metabolism. The process involved in eliminating oxidized proteins and the possible roles that HOIL-1 ubiquitin ligase may play in these processes are discussed.  相似文献   

4.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

5.
In this paper, we review experimental advances in molecular neurobiology of Alzheimer's disease (AD), with special emphasis on analysis of neural function of proteins involved in AD pathogenesis, their relation with several signaling pathways and with oxidative stress in neurons. Molecular genetic studies have found that mutations in APP, PS1 and PS2 genes and polymorphisms in APOE gene are implicated in AD pathogenesis. Recent studies show that these proteins, in addition to its role in beta-amyloid processing, are involved in several neuroplasticity-signaling pathways (NMDA-PKA-CREB-BDNF, reelin, wingless, notch, among others). Genomic and proteomic studies show early synaptic protein alterations in AD brains and animal models. DNA damage caused by oxidative stress is not completely repaired in neurons and is accumulated in the genes of synaptic proteins. Several functional SNPs in synaptic genes may be interesting candidates to explore in AD as genetic correlates of this synaptopathy in a "synaptogenomics" approach. Thus, experimental evidence shows that proteins implicated in AD pathogenesis have differential roles in several signaling pathways related to neuromodulation and neurotransmission in adult and developing brain. Genomic and proteomic studies support these results. We suggest that oxidative stress effects on DNA and inherited variations in synaptic genes may explain in part the synaptic dysfunction seen in AD.  相似文献   

6.
PTMs such as phosphorylations are usually involved in signal transduction pathways. To investigate the temporal dynamics of phosphoproteome changes upon viral infection, a model system of IMR‐90 cells infected with human adenovirus type 2 (Ad2) is used in a time‐course quantitative analysis combining titanium dioxide (TiO2) particle enrichment and SILAC‐MS. Quantitative data from 1552 phosphorylated sites clustered the highly altered phosphorylated sites to the signaling by rho family GTPases, the actin cytoskeleton signaling, and the cAMP‐dependent protein kinase A signaling pathways. Their activation is especially pronounced at early time post‐infection. Changes of several phosphorylated sites involved in the glycolysis pathway, related to the activation of the Warburg effect, point at virus‐induced energy production. For Ad2 proteins, 32 novel phosphorylation sites are identified and as many as 52 phosphorylated sites on 17 different Ad2 proteins are quantified, most of them at late time post‐infection. Kinase predictions highlighted activation of PKA, CDK1/2, MAPK, and CKII. Overlaps of kinase motif sequences for viral and human proteins are observed, stressing the importance of phosphorylation during Ad2 infection.  相似文献   

7.
Recent results suggest that long-lasting potentiation at hippocampal synapses involves the rapid formation of clusters or puncta of presynaptic as well as postsynaptic proteins, both of which are blocked by antagonists of NMDA receptors and an inhibitor of actin polymerization. We have investigated whether the increase in puncta involves retrograde signaling through the NO-cGMP-cGK pathway and also examined the possible roles of two classes of molecules that regulate the actin cytoskeleton: Ena/VASP proteins and Rho GTPases. Our results suggest that NO, cGMP, cGK, actin, and Rho GTPases including RhoA play important roles in the potentiation and act directly in both the presynaptic and postsynaptic neurons, where they contribute to the increase in puncta of synaptic proteins. cGK phosphorylates synaptic VASP during the potentiation, whereas Rho GTPases act both in parallel and upstream of cGMP, in part by maintaining the synaptic localization of soluble guanylyl cyclase.  相似文献   

8.
Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.This work was supported by FAPESP (grant numbers: 97/09507-6, 01/09047-2).  相似文献   

9.
Network models combined with gene expression studies have become useful tools for studying complex diseases like Alzheimer's disease. We constructed a "Core" Alzheimer's disease protein interaction network by human curation of the primary literature. The Core network consisted of 775 nodes and 2,204 interactions. To our knowledge, this is the most comprehensive and accurate protein interaction network yet constructed for Alzheimer's disease. An "Expanded" network was computationally constructed by adding additional proteins that interacted with Core network proteins, and consisted of 4,945 nodes and 26,064 interactions. We then mapped existing gene expression studies to the Core network. This combined data model identified the MAPK/ERK pathway and clathrin-mediated receptor endocytosis as key pathways in Alzheimer's disease. Important proteins in the MAPK/ERK pathway that interacted in the Core network formed a downregulated cluster of nodes, whereas clathrin and several clathrin accessory proteins that interacted in the Core network formed an upregulated cluster of nodes. The MAPK/ERK pathway is a key component in synaptic plasticity and learning, processes disrupted in Alzheimer's. Clathrin and clathrin adaptor proteins are involved in the endocytosis of the APP protein that can lead to increased intracellular levels of amyloid beta peptide, contributing to the progression of Alzheimer's.  相似文献   

10.
Long-lasting synaptic plasticity involves changes in both synaptic morphology and electrical signaling (here referred to as structural and functional plasticity). Recent studies have revealed a myriad of molecules and signaling processes that are critical for each of these two forms of plasticity, but whether and how they are mechanistically linked to achieve coordinated changes remain controversial.It is well accepted that functional plasticity at the excitatory synapse is dependent upon the activities of glutamate receptors. While the activation of NMDARs (N-methyl-D-aspartic acid receptors) and/or mGluRs (metabotropic glutamate receptors) is required for the induction of many forms of plasticity, AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors), the principal mediators of fast excitatory synaptic transmission, are the ultimate targets of modifications that express functional plasticity. Investigations exploring structural plasticity have been mainly focused on the small membranous protrusions on the dendrites called spines. The morphological regulation of these spines is mediated by the reorganization of the actin cytoskeleton, the predominant structural component of the synapse. In this regard, the Rho family of GTPases, particularly Rac1, RhoA and Cdc42, is found to be the central regulator of spine actin and structural plasticity of the synapse.It is thought that the collaborative interaction between functional and structural factors underlies the sustained or permanent nature of long-lasting synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. However, data specifically pertaining to whether and how these two distinct components are linked at the molecular level remain sparse. In this regard, we have identified a number of synaptic proteins that are involved in both structural and functional changes during mGluR-dependent LTD (mGluR-LTD). Among these are the GluA2 (formerly called GluR2) subunit of AMPARs, Rac1 and Rac1-activated kinases. We have discovered that these proteins interact and reciprocally regulate each other, which led us to hypothesize that the GluA2–Rac1 interaction may serve as a coordinator between functional and morphological plasticity. In this review, we will briefly discuss the available evidence to support such a hypothesis.  相似文献   

11.
Rho GTPase-activating proteins in cell regulation   总被引:35,自引:0,他引:35  
  相似文献   

12.

Background

Ras GTPases mediate numerous biological processes through their ability to cycle between an inactive GDP-bound form and an active GTP-bound form. Guanine nucleotide exchange factors (GEFs) favor the formation of the active Ras-GTP, whereas GTPase activating proteins (GAPs) promote the formation of inactive Ras-GDP. Numerous studies have established complex signaling cross-talks between Ras GTPases and other members of the superfamily of small GTPases. GEFs were thought to play a major role in these cross-talks. However, recently GAPs were also shown to play crucial roles in these processes. Among RasGAPs, Nf1 is of special interest. Nf1 is responsible for the genetic disease Neurofibromatosis type I, and recent data strongly suggest that this RasGAP connects different signaling pathways.

Methodology/Principal Findings

In order to know if the RasGAP Nf1 might play a role in connecting Ras GTPases to other small GTPase pathways, we systematically looked for new partners of Nf1, by performing a yeast two-hybrid screening on its SecPH domain. LIMK2, a major kinase of the Rho/ROCK/LIMK2/cofilin pathway, was identified in this screening. We confirmed this interaction by co-immunoprecipitation experiments, and further characterized it. We also demonstrated its specificity: the close related homolog of LIMK2, LIMK1, does not interact with the SecPH domain of Nf1. We then showed that SecPH partially inhibits the kinase activity of LIMK2 on cofilin. Our results furthermore suggest a precise mechanism for this inhibition: in fact, SecPH would specifically prevent LIMK2 activation by ROCK, its upstream regulator.

Conclusions/Significance

Although previous data had already connected Nf1 to actin cytoskeleton dynamics, our study provides for the first time possible detailed molecular requirements of this involvement. Nf1/LIMK2 interaction and inhibition allows to directly connect neurofibromatosis type I to actin cytoskeleton remodeling, and provides evidence that the RasGAP Nf1 mediates a new cross-talk between Ras and Rho signaling pathways within the superfamily of small GTPases.  相似文献   

13.
Signal transduction gRABs attention   总被引:7,自引:0,他引:7  
Rab proteins are small GTPases involved in the regulation of vesicular membrane traffic. Research done in the past years has demonstrated that some of these proteins are under the control of signal transduction pathways. Still, several recent papers point out to a new unexpected role for this family of Ras-related proteins, as potential regulators of intracellular signaling pathways. In particular, several evidence indicate that members of the Rab family of small GTPases, through their effectors, are key molecules participating to the regulation of numerous signal transduction pathways profoundly influencing cell proliferation, cell nutrition, innate immune response, fragmentation of compartments during mitosis and apoptosis. Even more surprisingly, direct involvement of Rab proteins in signaling to the nucleus has been demonstrated. This review will focus on aspects of Rab proteins function connected to signal transduction and, in particular, connections between membrane traffic and other cell pathways will be examined.  相似文献   

14.
Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein–protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer’s disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer’s disease.  相似文献   

15.
Neuronal communication involves the fusion of neurotransmitter filled synaptic vesicles with the presynaptic terminal. This exocytotic event depends upon proteins present in three separate compartments: the synaptic vesicle, the synaptic cytosol, and the presynaptic membrane. Recent data indicate that the basic components of exocytotic pathways, including those used for neurotransmitter release, are conserved from yeast to human. Genetic dissection of the secretory pathway in yeast, identification of the target proteins cleaved by the clostridial neurotoxins and biochemical characterization of the interactions of synaptic proteins from vertebrates have converged to provide the SNARE (soluble NSF attachment protein receptor) hypothesis for vesicle trafficking. This model proposes that proteins present in the vesicle (v-SNAREs) interact with membrane receptors (t-SNAREs) to provide a molecular scaffold for cytosolic proteins involved in fusion. The hypothesis that these mechanisms function at the synapse relies largely uponin vitro evidence. Recently, genetic approaches in mice, C.elegans and the fruitfly,Drosophila melanagaster, have been used to dissect thein vivo function of numerous proteins involved in synaptic transmission. This review covers recent progress and insights provided by a genetic dissection of neurotransmitter release inDrosophila. In addition, we will provide evidence that the mechanisms for synaptic communication are highly conserved from invertebrates to vertebrates, makingDrosophila an ideal model system to further unravel the intricacies of synaptic transmission.  相似文献   

16.
Guanosine triphosphatases (GTPases) comprise a superfamily of proteins that provide molecular switches to regulate numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases. Recent work on a pair of GTPases in the signal recognition particle (SRP) pathway has revealed a distinct mode of GTPase regulation. Instead of the classical GTPase switch, the two GTPases in the SRP and SRP receptor undergo a series of conformational changes during their dimerization and reciprocal activation. Each conformational rearrangement provides a point at which these GTPases can communicate with and respond to their upstream and downstream biological cues, thus ensuring the spatial and temporal precision of all the molecular events in the SRP pathway. We suggest that the SRP and SRP receptor represent an emerging class of "multistate" regulatory GTPases uniquely suited to provide exquisite control over complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.  相似文献   

17.
18.
In eukaryotic cells, protein transport through the secretory and endocytic pathways is mediated by vesicular intermediates. Individual transport steps are regulated by Ras-like guanine nucleotide-binding proteins, termed Ypt in yeast or Rab in mammals. The complete sequencing of the Saccharomyces cerevisiae genome has revealed the total number of Ypt GTPases in this organism. There is some redundancy among the 11 Ypt proteins, and only those involved in the biosynthetic pathway are essential for celi viability.  相似文献   

19.
Darchen F  Goud B 《Biochimie》2000,82(4):375-384
Rab proteins form the largest branch of the Ras superfamily of GTPases. They are localized to the cytoplasmic face of organelles and vesicles involved in the biosynthetic/secretory and endocytic pathways in eukaryotic cells. It is now well established that Rab proteins play an essential role in the processes that underlie the targeting and fusion of transport vesicles with their appropriate acceptor membranes. They perform this task through interactions with a wide variety of effector molecules. In this review, we illustrate recent advances in the field of Rab GTPases, taking as examples two proteins involved in the biosynthetic pathway, Rab3 and Rab6.  相似文献   

20.
A proteomic survey of rat cerebral cortical synaptosomes   总被引:1,自引:0,他引:1  
Previous findings from our laboratory and others indicate that two-dimensional gel electrophoresis (2-DE) can be used to study protein expression in defined brain regions, but mainly the proteins which are present in high abundance in glia are readily detected. The current study was undertaken to determine the protein profile in a synaptosomal subcellular fraction isolated from the cerebral cortex of the rat. Both 2-DE and liquid chromatography - tandem mass spectrometry (LC-MS/MS) procedures were used to isolate and identify proteins in the synaptosomal fraction and accordingly >900 proteins were detected using 2-DE; the 167 most intense gel spots were isolated and identified with matrix-assisted laser desorption/ionization - time of flight peptide mass fingerprinting or LC-MS/MS. In addition, over 200 proteins were separated and identified with the LC-MS/MS "shotgun proteomics" technique, some in post-translationally modified form. The following classes of proteins associated with synaptic function were detected: (a) proteins involved in synaptic vesicle trafficking-docking (e.g., SNAP-25, synapsin I and II, synaptotagmin I, II, and V, VAMP-2, syntaxin 1A and 1B, etc.); (b) proteins that function as transporters or receptors (e.g., excitatory amino acid transporters 1 and 2, GABA transporter 1); (c) proteins that are associated with the synaptic plasma membrane (e.g., post-synaptic density-95/synapse-associated protein-90 complex, neuromodulin (GAP-43), voltage-dependent anion-selective channel protein (VDACs), sodium-potassium ATPase subunits, alpha 2 spectrin, septin 7, etc.); and (d) proteins that mediate intracellular signaling cascades that modulate synaptic function (e.g., calmodulin, calcium-calmodulin-dependent protein kinase subunits, etc.). Other identified proteins are associated with mitochondrial or general cytosolic function. Of the two proteins identified as endoplasmic reticular, both interact with the synaptic SNARE complex to regulate vesicle trafficking. Taken together, these results suggest that the integrity of the synaptosomes was maintained during the isolation procedure and that this subcellular fractionation technique enables the enrichment of proteins associated with synaptic function. The results also suggest that this experimental approach can be used to study the differential expression of multiple proteins involved in alterations of synaptic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号