首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the freshwater planarian Dugesia japonica, five cDNAs for HOM/HOX homeobox genes were cloned and sequenced. Together with sequence data on HOM/HOX homeobox genes of platyhelminthes deposited in databases, comparison of the deduced amino acid sequences revealed that planarians have at least seven HOM/HOX homeobox genes, Plox1 to Plox7 ( anarian HOM/H homeobox genes). Whole-mount in situ hybridization and RT-PCR revealed that Plox4 and Plox5 were increasingly expressed along a spatial gradient in the posterior region of intact animals. During regeneration, Plox5 was expressed only in the posterior region of regenerating body pieces, suggesting that the gene is involved in the anteroposterior patterning in planarians. Plox5 was not found to be expressed in a blastema-specific manner, which contradicts a previous report (J. R. Bayascas, E. Castillo, A. M. Muños-Mármol, and E. Saló. Development 124, 141–148, 1997). X-ray irradiation experiments showed that Plox5 was expressed at least in some cells other than neoblasts, but that the induction of Plox5 expression during regeneration might require neoblasts.  相似文献   

2.
Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.  相似文献   

3.
The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo.During regeneration,stem ceils (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body.However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively.Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1).In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vaseular system.Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation.In Djrho2-RNAi planarians, smaller anterior blaste-mas were observed in tail fragments during regeneration.Consistently, defective regeneration of visual nerve was detected by immu-nostainning with VC-1 antibody.These results suggested that Djrho2 is required for proper anterior regeneration in planairan.In contrast,no abnormality was observed after RNAi of Djrho3.We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach.Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional elec-trophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis.Among them, 6 actin-binding or cy-toskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.  相似文献   

4.
The robust regenerative abilities of planarians absolutely depend on a unique population of pluripotent stem cells called neoblasts, which are the only mitotic somatic cells in adult planarians and are responsible for blastema formation after amputation. Little is known about the molecular mechanisms that drive blastema formation during planarian regeneration. Here we found that treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 blocked the entry of neoblasts into the M-phase of the cell cycle, while allowing neoblasts to successfully enter S-phase in the planarian Dugesia japonica. The rapid and efficient blockage of neoblast mitosis by treatment with the JNK inhibitor provided a method to assess whether temporally regulated cell cycle activation drives blastema formation during planarian regeneration. In the early phase of blastema formation, activated JNK was detected prominently in a mitotic region (the "postblastema") proximal to the blastema region. Furthermore, we demonstrated that undifferentiated mitotic neoblasts in the postblastema showed highly activated JNK at the single cell level. JNK inhibition by treatment with SP600125 during this period caused a severe defect of blastema formation, which accorded with a drastic decrease of mitotic neoblasts in regenerating animals. By contrast, these animals still retained many undifferentiated neoblasts near the amputation stump. These findings suggest that JNK signaling plays a crucial role in feeding into the blastema neoblasts for differentiation by regulating the G2/M transition in the cell cycle during planarian regeneration.  相似文献   

5.
6.
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.  相似文献   

7.
Hox genes are pivotal molecules in the control of morphogenesis along the anterior-posterior (AP) axis in various bilaterians. Planarians are key animals for understanding the evolution of the bilaterian body plan. Furthermore, they are also known for their strong regeneration ability and are thought to use the Hox genes in the process of reconstruction of the AP axis. In the present paper, the identification and analysis of expression of two posterior (Abdominal-B-like) genes, DjAbd-Ba and DjAbd-Bb, is reported in the planarian Dugesia japonica. DjAbd-Ba is expressed in the entire tail region and its anterior boundary is the posterior pharyngeal region. In contrast, DjAbd-Bb is expressed in several types of cells throughout the body. During regeneration, the expression of DjAbd-Ba rapidly recovers a pattern similar to that in the normal worm. These findings suggest the possibility that DjAbd-Ba is involved in the specification of the tail region. The anterior boundary of the expression domain of the posterior gene DjAbd-Ba is anterior to the domains of the central genes Plox4-Dj and Plox5-Dj. These expression patterns of planarian Hox genes seem out of the rule of spatial colinearity and may reflect an ancestral feature of bilaterian Hox genes.  相似文献   

8.
The pharynx is a distinctive organ in the center of the body of planarians. Although the process of pharynx regeneration has been studied previously, the details and mechanism of the process remain controversial. We examined the process of regeneration of the pharynx in the planarian Dugesia japonica in detail by in situ hybridization and immunohistochemistry for myosin heavy chain-A (DjMHC-A), which is mainly expressed in the pharynx muscles and pharynx-anchoring muscles. We also monitored the behavior of the neoblasts in this process. In the regenerating posterior body fragment, the pharyngeal rudiment was formed by accumulation of cells that were probably undifferentiated cells derived from the neoblasts. The pharynx muscles appeared to differentiate in the rudiment in a manner that was coordinated with the differentiation of the pharynx-anchoring muscles in the region surrounding the rudiment. During this process, all cells containing mRNA for DjMHC-A also contained the DjMHC-A protein. These results argue against a previously proposed hypothesis that in the mesenchyme, 'pharynx-forming cells', which are committed to differentiate into the pharyngeal cells but have not yet differentiated, gather in the rudiment to form the pharynx (Agata and Watanabe, 1999). Rather, the present observations suggest that regeneration of the planarian pharynx proceeds by accumulation of cells that are probably undifferentiated cells derived from neoblasts in the rudiment, followed by their differentiation into the pharyngeal cells there.  相似文献   

9.
The singular regenerative abilities of planarians require a population of stem cells known as neoblasts. In response to wounding, or during the course of cell turnover, neoblasts are signaled to divide and/or differentiate, thereby replacing lost cell types. The study of these pluripotent stem cells and their role in planarian regeneration has been severely hampered by the reported inability of planarians to incorporate exogenous DNA precursors; thus, very little is known about the mechanisms that control proliferation and differentiation of this stem cell population within the planarian. Here we show that planarians are, in fact, capable of incorporating the thymidine analogue bromodeoxyuridine (BrdU), allowing neoblasts to be labeled specifically during the S phase of the cell cycle. We have used BrdU labeling to study the distribution of neoblasts in the intact animal, as well as to directly demonstrate the migration and differentiation of neoblasts. We have examined the proposal that a subset of neoblasts is arrested in the G2 phase of the cell cycle by double-labeling with BrdU and a mitosis-specific marker; we find that the median length of G2 (approximately 6 h) is sufficient to account for the initial mitotic burst observed after feeding or amputation. Continuous BrdU-labeling experiments also suggest that there is not a large, slow-cycling population of neoblasts in the intact animal. The ability to label specifically the regenerative stem cells, combined with the recently described use of double-stranded RNA to inhibit gene expression in the planarian, should serve to reignite interest in the flatworm as an experimental model for studying the problems of metazoan regeneration and the control of stem cell proliferation.  相似文献   

10.
Myohara M 《PloS one》2012,7(5):e37319
The term 'neoblast' was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts.  相似文献   

11.
Wnt signaling functions in axis formation and morphogenesis in various animals and organs. Here we report that Wnt signaling is required for proper brain patterning during planarian brain regeneration. We showed here that one of the Wnt homologues in the planarian Dugesia japonica, DjwntA, was expressed in the posterior region of the brain. When DjwntA-knockdown planarians were produced by RNAi, they could regenerate their heads at the anterior ends of the fragments, but formed ectopic eyes with irregular posterior lateral branches and brain expansion. This suggests that the Wnt signal may be involved in antero-posterior (A-P) patterning of the planarian brain, as in vertebrates. We also investigated the relationship between the DjwntA and nou-darake/FGFR signal systems, as knockdown planarians of these genes showed similar phenotypes. Double-knockdown planarians of these genes did not show any synergistic effects, suggesting that the two signal systems function independently in the process of brain regeneration, which accords with the fact that nou-darake was expressed earlier than DjwntA during brain regeneration. These observations suggest that the nou-darake/FGFR signal may be involved in brain rudiment formation during the early stage of head regeneration, and subsequently the DjwntA signal may function in A-P patterning of the brain rudiment.  相似文献   

12.
Planarians contain a large population of stem cells, named neoblasts, and use these for continuous turnover of all cell types. In addition, thanks to the amazing flexibility of these cells, planarians respond well to the effects of stressful situations, for example activating regeneration after trauma. How neoblasts respond to stress and support continuous proliferation, maintaining long-term stability, is still an open question. Heat shock proteins (HSPs) are a complex protein family with key roles in maintaining protein homeostasis, as well as in apoptosis and growth-related processes. We recently characterized some planarian homologs of hsp genes that are highly expressed in mammalian stem cells, and observed that some of them are critical for neoblast survival/maintenance. The results of these studies support the notion that some HSPs play crucial roles in the modulation of pathways regulating stem cell activity, regeneration and tissue repair. In this review we compare the evidence available for planarian hsp genes and focus on questions emerging from these results.  相似文献   

13.
14.
It has been postulated that the high regeneration ability of planarians is supported by totipotent stem cells, called neoblasts. There have been a few reports showing the distribution of neoblasts in planarians. However, the findings were not completely consistent. To determine the distribution of neoblasts, we focused on proliferating cell nuclear antigen (PCNA), which is present in proliferative cells. We cloned and sequenced the cDNA of PCNA from the planarian Dugesia japonica and produced an antiserum recognizing the gene product. X-ray irradiation caused rapid loss of all PCNA-positive cells and loss of the neoblasts (which were morphologically defined by the presence of the chromatoid body), strongly suggesting that all PCNA-positive cells were true neoblasts. Using the antiserum, we were successful in identifying the neoblasts more clearly than any previous work. In addition to their dispersed distribution in the dorsal and ventral mesenchyme, the neoblasts were distributed as clusters along the midline and bilateral lines in the dorsal mesenchyme. We also examined the behavior of the neoblasts after decapitation. Decapitation did not seem to affect the migration of neoblasts far from the wound. We demonstrated here that DjPCNA is a powerful tool for identifying planarian neoblasts.Edited by D.A. Weisblat  相似文献   

15.
16.
17.
Molecular biology, recombinant DNA techniques, and new methods of cell lineage have reignited the interest of planarians and other worms (mainly annelids and nemerteans) as invertebrate model systems of regeneration. Here, the mean results produced in the last five years are reviewed, an update of the genes and molecules involved in planarian regeneration is provided, and a new morphallactic-epimorphic model of pattern formation is suggested. Moreover, and most importantly, we highlight the new strides brought upon by genomic/proteomic analyses, RNA interference (RNAi) to inactivate gene function, and Bromodeoxyuridine (BrdU) cell labelling. The raising hope to obtain transformed neoblasts and transgenic planarians is also stressed. Altogether, such approaches will eventually lead to solve the long-standing open questions on regeneration which still baffles us. Finally, we warn against overlooking the evident links between regeneration processes and those controlling the daily wear and tear of tissues and cells. Both processes act, at least in planarians, upon a unique stem-cell endowed with an unrivaled developmental potential in the animal kingdom-the neoblast. This cell could be considered the forebear and a model system for stem-cell analysis.  相似文献   

18.
19.
The planarian's remarkable regenerative ability is thought to be supported by the stem cells (neoblasts) found throughout its body. Here we report the identification of a subpopulation of neoblasts, which was revealed by the expression of the nanos-related gene of the planarian Dugesia japonica, termed Djnos. Djnos-expressing cells in the asexual planarian were distributed to the prospective ovary or testes forming region in the sexual planarian. During sexualization, Djnos-expressing cells produce germ cells, suggesting that in the asexual state these cells were kept as germline stem cells for the oogonia and spermatogonia. Interestingly, the germline stem cells were indistinguishable from the neoblasts by morphology and X-ray sensitivity and did not seem to contribute to the regeneration at all. Germline stem cells initially appear in the growing infant planarian, suggesting that germline stem cells are separated from somatic stem cells in the planarian. Thus, planarian neoblasts can be classified into two groups; somatic stem cells for regeneration and tissue renewal, and germline stem cells for production of germ cells during sexualization. However, Djnos-positive cells appeared in the newly formed trunk region from the head piece, suggesting that somatic stem cells can convert to germline stem cells.  相似文献   

20.
A Bruno-like gene is required for stem cell maintenance in planarians   总被引:1,自引:0,他引:1  
The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号