首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.  相似文献   

2.
3.
4.
5.
6.
7.
Upregulation of Notch3 expression has been reported in many cancers and is considered a marker for poor prognosis. Hypoxia is a driving factor of the Notch3 signaling pathway; however, the induction mechanism and role of hypoxia-inducible factor-1α (HIF-1α) in the Notch3 response are still unclear. In this study, we found that HIF-1α and poly [ADP-ribose] polymerase 1 (PARP-1) regulate Notch3 induction under hypoxia via a noncanonical mechanism. In the analyzed cancer cell lines, Notch3 expression was increased during hypoxia at both the mRNA and protein levels. HIF-1α knockdown and Notch3 promoter reporter analyses indicated that the induction of Notch3 by hypoxia requires HIF-1α and also another molecule that binds the Notch3 promoter’s guanine-rich region, which lacks the canonical hypoxia response element. Therefore, using mass spectrometry analysis to identify the binding proteins of the Notch3 promoter, we found that PARP-1 specifically binds to the Notch3 promoter. Interestingly, analyses of the Notch3 promoter reporter and knockdown of PARP-1 revealed that PARP-1 plays an important role in Notch3 regulation. Furthermore, we demonstrate that PARP inhibitors, including an inhibitor specific for PARP-1, attenuated the induction of Notch3 by hypoxia. These results uncover a novel mechanism in which HIF-1α associates with PARP-1 on the Notch3 promoter in a hypoxia response element–independent manner, thereby inducing Notch3 expression during hypoxia. Further studies on this mechanism could facilitate a better understanding of the broader functions of HIF-1α, the roles of Notch3 in cancer formation, and the insights into novel therapeutic strategies.  相似文献   

8.
Hypoxia requires notch signaling to maintain the undifferentiated cell state   总被引:17,自引:0,他引:17  
In addition to controlling a switch to glycolytic metabolism and induction of erythropoiesis and angiogenesis, hypoxia promotes the undifferentiated cell state in various stem and precursor cell populations. Here, we show that the latter process requires Notch signaling. Hypoxia blocks neuronal and myogenic differentiation in a Notch-dependent manner. Hypoxia activates Notch-responsive promoters and increases expression of Notch direct downstream genes. The Notch intracellular domain interacts with HIF-1alpha, a global regulator of oxygen homeostasis, and HIF-1alpha is recruited to Notch-responsive promoters upon Notch activation under hypoxic conditions. Taken together, these data provide molecular insights into how reduced oxygen levels control the cellular differentiation status and demonstrate a role for Notch in this process.  相似文献   

9.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

10.
Despite a relatively simple core-signaling transduction machinery, Notch signaling controls cell differentiation in many different tissues and at multiple stages in a given cell lineage. To understand how Notch generates this multitude of cellular responses, it is important to learn how the Notch-signaling output is modulated at various levels. Pathway-intrinsic as well as pathway-extrinsic mechanisms, including cross-talk between Notch and other major signaling mechanisms, modulate Notch signaling, contributing to the versatile output. In this review, we discuss how Notch signaling is altered in tumors and illustrate the complexity in signaling pathway cross-talk with examples of how Notch synergizes with NF-kappaB signaling and the cellular response to lowered oxygen (hypoxia).  相似文献   

11.
12.
13.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context. This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC). We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

14.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context.

This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC).

We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

15.
Modulation of vascular gene expression by hypoxia   总被引:1,自引:0,他引:1  
  相似文献   

16.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

17.
Microenvironmental oxygen (O(2)) regulates stem cell activity, and a hypoxic niche with low oxygen levels has been reported in multiple stem cell types. Satellite cells are muscle-resident stem cells that maintain the homeostasis and mediate the regeneration of skeletal muscles. We demonstrate here that hypoxic culture conditions favor the quiescence of satellite cell-derived primary myoblasts by upregulating Pax7, a key regulator of satellite cell self-renewal, and downregulating MyoD and myogenin. During myoblast division, hypoxia promotes asymmetric self-renewal divisions and inhibits asymmetric differentiation divisions without affecting the overall rate of proliferation. Mechanistic studies reveal that hypoxia activates the Notch signaling pathway, which subsequently represses the expression of miR-1 and miR-206 through canonical Hes/Hey proteins, leading to increased levels of Pax7. More importantly, hypoxia conditioning enhances the efficiency of myoblast transplantation and the self-renewal of implanted cells. Given the robust effects of hypoxia on maintaining the quiescence and promoting the self-renewal of cultured myoblasts, we predict that oxygen levels in the satellite cell niche play a central role in precisely balancing quiescence versus activation, and self-renewal versus differentiation, in muscle stem cells in vivo.  相似文献   

18.
Adequate response to low oxygen levels (hypoxia) by hypoxia inducible factor (HIF) is essential for normal development and physiology, but this pathway may also contribute to pathological processes like tumor angiogenesis. Here we show that hypoxia is an inducer of Notch signaling. Hypoxic conditions lead to induction of the Notch ligand Dll4 and the Notch target genes Hey1 and Hey2 in various cell lines. Promoter analysis revealed that Hey1, Hey2 and Dll4 are induced by HIF-1alpha and Notch activation. Hypoxia-induced Notch signaling may also determine endothelial identity. Endothelial progenitor cells (EPCs) contain high amounts of COUP-TFII, a regulator of vein identity, while levels of the arterial regulators Dll4 and Hey2 are low. Hypoxia-mediated upregulation of Dll4 and Hey2 leads to repression of COUP-TFII in eEPCs. Finally, we show that Hey factors are capable of repressing HIF-1alpha-induced gene expression, suggesting a negative feedback loop to prevent excessive hypoxic gene induction. Thus, reduced oxygen levels lead to activation of the Dll4-Notch-Hey2 signaling cascade and subsequent repression of COUP-TFII in endothelial progenitor cells. We propose that this is an important step in the developmental regulation of arterial cell fate decision.  相似文献   

19.
Small cell lung cancer (SCLC) is one of the most malignant neoplasms in common human cancers. The tumor is composed of small immature-looking cells with a round or fusiform shape, which possesses weak adhesion features among them, suggesting that SCLC shows the morphological characteristics of epithelial to mesenchymal transition (EMT). SCLC is characterized by high metastatic and recurrent rates, sensitivity to the initial chemotherapy, and easy acquirement of chemoresistance afterwards. These characters may be related to the EMT phenotype of SCLC. Notch signaling is an important signaling pathway, and could have roles in regulating neuroendocrine differentiation, proliferation, cell adhesion, EMT, and chemoresistance. Notch1 is usually absent in SCLC in vivo, but could appear after chemotherapy. Notch1 can enhance cell adhesion by induction of E-cadherin in SCLC, which indicates mesenchymal to epithelial transition. On the other hand, achaete-scute complex homologue 1 (ASCL1), negatively regulated by Notch signaling, is a lineage-specific gene of SCLC, and functions to promote neuroendocrine differentiation as well as EMT. ASCL1-transfected adenocarcinoma cell lines induced neuroendocrine phenotypes and lost epithelial cell features. SCLC is characterized by neuroendocrine differentiation and EMT-like features, which could be produced by inactive Notch signaling and ASCL1 expression. In addition, chemical and radiation treatments can activate Notch signaling, which suppress neuroendocrine differentiation and induces chemoradioresistance, accompanied by secession from EMT. Thus, the status of Notch signaling and ASCL1 expression may determine the cell behaviors of SCLC partly through modifying EMT phenotypes.  相似文献   

20.
Notch is an ancient cell signaling system that regulates cell fate specification, stem cell maintenance and initiation of differentiation in embryonic and postnatal tissues.1 Alteration of these functions in the adult have been associated to various types of cancer in which Notch may act as an oncogen or as a tumor suppressor.2,3 As occurs during development, Notch cooperates with other signaling pathways in the transformation process.2,4 Notch has recently been shown to promote epithelial-to-mesenchymal transition (EMT) during cardiac valve formation, via snail induction and subsequent cadherin downregulation.5 One implication of this work is that Notch acting through a similar mechanism, may also be involved in the EMT process that occurs during tumor progression and converts polarized epithelial cells into motile, invasive cells.6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号