首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Curcumin, a derivative of the plant Curcuma longa, is used extensively in the food industry. It is a major component of curry powder, and research has shown that curcumin may prevent cancer and other chronic diseases. We have developed a robust automated analytical method for the determination of curcumin in plasma and urine. The method involves extracting the curcumin from 0.2 ml sample volume with ethyl acetate/methanol organic solvents, and use of an internal standard, beta-17-estradiol acetate. Analysis utilizes a reversed-phase C(18) column and UV detection at 262 nm. Performance characteristics have been assessed. The assay is linear from 0.2 to 7.0 microgram/ml. The coefficient of variation for intra- and inter-day assays is <7.5%. The average recovery of curcumin from plasma and urine is greater than 96%. The data presented in this report demonstrate that the method provides rapid, sensitive, precise and accurate measurements of curcumin concentrations in plasma and urine.  相似文献   

2.
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.  相似文献   

3.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

4.
A sensitive reversed-phase high-performance liquid chromatographic method with ultraviolet absorbance detection has been developed to simultaneously determine the concentrations of nerisopam (EGIS-6775) and its N-acetyl metabolite (EGIS-7649) from human plasma. The separation of the investigated compounds and internal standard was achieved on a Nucleosil 7 C18 column with 2 mM heptanesulphonic acid containing 0.04 M phosphoric acid-acetonitrile-methanol (70:25:5 v/v), pH 2.7 mobile phase. The detection was performed at 385 nm. The compounds were isolated from plasma by Bakerbond C18 solid-phase extraction. The limit of quantitation was 10 ng/ml plasma for each compound investigated. The assay has been validated with respect to accuracy, precision and system suitability. All validated parameters were found to be within the necessary limits. On the basis of the sensitivity, linearity and validation parameters, the developed analytical method was found to be suitable for the determination of nerisopam and its N-acetyl metabolite from human plasma and for application in pharmacokinetic studies and human drug monitoring. The pharmacokinetic parameters obtained from twelve human volunteers are reported. It was found that nerisopam acetylation is polymorphic: the volunteers with fast or slow acetylator phenotypes produced significantly different plasma concentrations. In slow acetylator phenotypes the concentration of nerisopam was considerably higher in plasma, while the level of its acetyl metabolite was higher in plasma of fast acetylators.  相似文献   

5.
Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 mL) or urine (0.1 mL). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was <15% whereas the accuracy (% deviation from expected) ranged from -10.1 to 14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate.  相似文献   

6.
An isocratic reversed-phase HPLC method for the simultaneous quantitation of alpha-lipoic acid and five of its metabolites in human plasma as well as in human urine employing solid-phase extraction and pulsed amperometric detection was developed and validated. The method was found to be sufficiently precise and accurate for the measurement of alpha-lipoic acid and its metabolites 6,8-bis(methylthio)octanoic acid, 4,6-bis(methylthio)hexanoic acid and 2,4-bis(methylthio)butanoic acid in plasma and urine samples, obtained from patients suffering from diabetic neuropathy as well as from healthy volunteers following daily oral administration of 600 mg alpha-lipoic acid. The quantitation of the metabolite bisnorlipoic acid was often impaired by interferences caused by an unidentified metabolite. However, bisnorlipoic acid was detected in few test samples and the concentrations were consistently low. Despite the poor recovery of the metabolite tetranorlipoic acid from plasma, reproducibility and accuracy were found to be from acceptable magnitude to assess concentration time courses. Thus, the obtained analytical results are considered as reliable and well suited for pharmacokinetic studies of alpha-lipoic acid and its metabolites.  相似文献   

7.
Therapeutic drug monitoring can involve quantitation in either microgram, nanogram or picogram concentrations present in a complex biological matrix (whole blood, urine or tissue).The chemical structure of a compound influences not only the analytical method best suited to its quantitation, but also its acid/base character (PKa) and its extractability. The dose administered, the bioavailability of the dosage form, and the pharmacokinetic profile of the drug govern the circulating concentrations of either the parent drug and/or its metabolites present in vivo, and dictate the ultimate sensitivity and specificity required of the analytical method.The degree of sample preparation required is dependent on the analytical method used (gas—liquid chromatography, thin-layer chromatography, high-performance liquid chromatography) and on the tolerance of the specific type of detection system to contamination. Factors leading to compound losses during sample preparation (adsorption, stability) are critical at low concentrations and can adversely affect the reliability of an assay, therefore maximizing the overall recovery of the assay is essential not only for high sensitivity but also for good precision and accuracy. Therefore, the criteria to be used in sample preparation should aim to optimize all of the above factors in the overall development of a reliable and validated method for the compound suitable for use in clinical therapeutic monitoring.  相似文献   

8.
We have developed a high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-MS) method for quantifying docetaxel and paclitaxel in human plasma. The assay fulfills the need for defining the lower plasma concentrations of these antineoplastic agents that result from a number of changes in how these agents are used clinically. The assay uses paclitaxel as the internal standard for docetaxel, and vice versa; solid-phase extraction; a Phenomenex Hypersil ODS (5 micrometer, 100x2 mm) reversed-phase analytical column; an isocratic mobile phase of 0.1% formic acid in methanol-water (70:30, v/v); and mass spectrometric detection using electrospray positive mode electron ionization. The assay has a lower limit of quantitation (LLOQ) of 0.3 nM and is linear between 0.3 nM and 1 microM for docetaxel. For paclitaxel, the LLOQ was 1 nM, and the assay is linear between 1 nM and 1 microM. We demonstrated the suitability of this assay for docetaxel by using it to quantify the docetaxel concentrations in plasma of a patient given 40 mg/m(2) of docetaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. In a similar manner, the suitability of the assay for paclitaxel was demonstrated by using it to quantify the concentrations of paclitaxel in the plasma of a patient given 15 mg/m(2) of paclitaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. The LC-MS assay, which proved superior because of its greater sensitivity and relatively short (7 min) run time, should be an important tool for future pharmacokinetic analyses of docetaxel and paclitaxel.  相似文献   

9.
Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiologic and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than curcumin. However, evaluation of clinical efficacy is limited by lack of sensitive methods for quantifying intake/absorption in blood or urine. We have developed a sensitive high performance liquid chromatography (HPLC) analytical method for detection of THC in plasma and urine. The method involves extracting the THC from 0.2 mL samples with 95% ethyl acetate/5% methanol, and beta-17-estradiol acetate as an internal standard. Analysis with a reversed-phase C18 column and UV detection at 280 nm demonstrates linear performance from 0.050 to 6.0 microg/mL in plasma, and 0.060 to 6.0 microg/mL in urine. The coefficients of variation for intra- and inter-assays were each<8.6%. The average recovery of THC from plasma and urine was greater than 98.5%. These data demonstrate a rapid, sensitive and accurate method for HPLC quantification of THC in plasma and urine.  相似文献   

10.
A sensitive and specific high-performance liquid chromatographic assay was developed for the determination of 10-chloro-5-(2-dimethylaminoethyl)-7H-indolo[2,3-C] quinolin-6(5H)-one [I] in blood or plasma with an overall recovery of 100.3 ± 9.1% and a limit of quantitation of 1.0 ng per ml of blood or plasma. The assay was used to determine blood concentrations of the drug in the rat following oral administration by intubation of a 1.17-mg dose of [I] - HCl.  相似文献   

11.
N-(n-Propyl)-N-(4-pyridinyl)-1H-indol-1-amine hydrochloride (HP 749, I), a non-receptor-dependent cholinomimetic agent with noradrenergic activity, is a potential agent for the treatment of Alzheimer's disease. Pharmacokinetic studies in animals and humans showed that I was well absorbed and metabolized primarily to the N-despropyl metabolite (P7480, II) after oral administration. To facilitate the kinetic studies, a sensitive and selective high-performance chromatographic assay was developed. I and II are extracted from plasma by a mixture of cyclohexane—ethyl acetate and chromatographed on an isocratic reversed-phase high-performance liquid chromatographic system employing an analytical phenyl column with acetonitrile—ammonium formate as mobile phase. The concentrations of these two compounds, quantitated by internal standardization, are monitored by ultraviolet detection. The method is linear in the plasma assay over a concentration range of 0.5–500 ng/ml for both compounds with a quantitation limit of 0.5 ng/ml. The precision and accuracy of the calibration curves and/or method are less than 10%. The recovery of I and II from plasma is 63–74 and 63–68%, respectively, over a concentration range of 0.5–500 ng/ml.  相似文献   

12.
Current methods of quantitation of histamine and its major metabolite N tau-methylhistamine are inaccurate and insensitive to the very low concentrations that exist in plasma samples. Therefore, an accurate and sensitive method for quantification in plasma has been developed using the stable isotope dilution assay with negative ion-chemical ionization mass spectrometry. For histamine, after the addition of [2H4]histamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the pentafluorobenzyl derivative (CH2C6F5)3-histamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 430/434. For N tau-methylhistamine, after the addition of N tau-[2H3]methylhistamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the heptafluorobutyryl derivative (C3F7CO2)2-N tau-methylhistamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 497/500. The precision of the histamine assay is 3.1% and the accuracy is 95.5 +/- 2.5% while the precision of the N tau-methylhistamine assay is 1.9% and the accuracy is 106.8 +/- 1.9%. The lower limits of sensitivity are 1 pg for histamine and 6 pg for N tau-methylhistamine injected on column. Using the assay in three normal human volunteers, plasma concentrations of histamine were 130, 92, and 85 pg/ml, and of N tau-methylhistamine were 229, 228, and 216 pg/ml. This assay provides a very sensitive and accurate method of quantitation of histamine and N tau-methylhistamine in plasma samples.  相似文献   

13.
A selective, accurate, precise and reproducible high-performance liquid chromatographic assay was developed for the quantitation of irbesartan, an angiotensin II antagonist, in human plasma and urine samples. The method involved solid-phase extraction of irbesartan and internal standard (I.S.) using a 100-mg Isolute CN cartridge. A portion of the eluate was injected onto an ODS analytical column connected to a fluorescence detector that was set at an excitation wavelength of 250 nm and an emission wavelength of 371 nm. The mobile phase consisted of 50% acetonitrile and a 50% weak phosphate-triethylamine solution, pH 3.5, at a flow-rate of 0.8 ml/min. The assay was linear from 1 to 1000 ng/ml with both plasma and urine. In either matrix, the lower limit of quantitation was 1 ng/ml. The analyses of quality control samples indicated that the nominal values could be predicted with an accuracy >95%. The inter- and intra-day coefficients of variation for the analyses in both matrices were <8%. Irbesartan was stable in both human plasma and urine for at least seven months at −20°C. The application of the assay to a pharmacokinetic study is described.  相似文献   

14.
An ultrasensitive noncompetitive hybridization-ligation heterogeneous enzyme-linked immunosorbent assay was developed for the quantitation of antisense phosphorothioate oligodeoxynucleotides in plasma using a 96-well plate format. The principle of the assay is based on heterogeneous noncompetitive binding of the analyte to a template probe, followed by addition of signal probe via ligation and detection using a fluorescence microtiter plate reader. The result showed no significant interference noted from untreated human plasma. In addition, the method is selective for the specific sequence tested (ISIS 2302) and cross-reactivity toward the 3'-metabolites is minimal (< 0.22%). A linear range of 0.05 to 2 nM (r > 0.99) was obtained in human plasma for ISIS 2302. Intraday and interday accuracy for the method was found to be within 80-120% of actual value. Intraday and interday precision has a percentage coefficient of variation less than 20%. The lower limit of quantitation of the method was 0.05 nM (0.05 pmol/ml) with 100 microL plasma or an absolute amount of 5 fmol. In summary, the assay was demonstrated to be specific, accurate, precise, and sensitive for the quantitation of ISIS 2302 in human plasma and was applied to the analysis of plasma samples in pharmacokinetic studies.  相似文献   

15.
Salmeterol is an inhaled bronchodilator drug used for treatment of asthma. Its concentrations in plasma are very low or undetectable by previously developed methods. The present paper describes a method for analysis of salmeterol in human plasma with 2.5 pg/mL lower limit of quantitation. Despite the basic character of the drug the method uses mixed mode anion-exchange solid phase extraction for sample preparation combined with a column switching approach to minimize matrix effects. Samples are separated and detected by LC/MS/MS. The method is easy to use, only requires 0.5 mL of plasma and was validated for use in bioanalytical applications. The method does not suffer from interference from co-administered fluticasone propionate.  相似文献   

16.
Pyrazoloacridine (PZA) is a 9-methoxy substituted acridine with a reducible nitro group. PZA has shown selective solid tumor cytotoxicity with activity against hypoxic cells, non-cycling cells and cells expressing the multidrug resistant phenotype. A high-performance liquid chromatographic (HPLC) assay was developed and validated for the determination of PZA in human plasma to support phase II clinical trials. PZA and ethyl orange, the internal standard, were isolated from human plasma by precipitating plasma proteins with methanol, and centrifuging to pellet the proteins. The resulting supernatant was injected onto a cyanopropyl HPLC column eluted isocratically with a mobile phase consisting of 125 mM ammonium acetate buffer pH 4.75-acetonitrile (76:24, v/v). A single wavelength at 460 nm was used for detection. Relative standard deviations for the assay ranged from 5.0% to 12.2% for four different drug concentrations and the limit of quantitation was 100 ng/ml. During the validation short term stability of the drug in plasma and stability of PZA on repeated freezing and thawing of plasma was evaluated. Overall recovery of PZA was 88%. This simple assay was found suitable for studying the clinical pharmacokinetics of PZA.  相似文献   

17.
A new HPLC assay using UV detection (200 nm) was developed to determine ethambutol (EMB) concentrations in plasma. Following extraction (0.1 ml plasma) with chloroform, EMB and octylamine (used as internal standard) were derivatized with phenylethylisocyanate. Quantitation in plasma was achieved at 200 nm. There were no interferences from endogenous compounds. Intra- and inter-day variabilities were lower than 5.2 and 7.6%, respectively. The limit of quantitation of the method was 0.2 μg/ml. In plasma, ethambutol was found to be stable for at least one month when samples were stored at −20°C. This assay was applied to the therapeutic monitoring of EMB concentrations in 19 patients suffering from tuberculosis.  相似文献   

18.
Indinavir is a member of a class of protease inhibitors that actively prevent the acquired immunodeficiency syndrome virion from maturing. A high-performance liquid chromatographic (HPLC) assay was developed and validated for the determination of indinavir in human plasma. Indinavir and the internal standard were isolated from the plasma by ether extraction. The residue after evaporation of ether was reconstituted with buffer and injected onto a C4 reversed-phase column eluted isocratically with a mobile phase consisting of 35:65 (v/v) of acetonitrile and buffer. A wavelength of 210 nm was found to be optimum for detection. The calibration range of this assay was from 10 to 5000 ng/ml and coefficients of variation for the assay ranged from 4.6% to 11.0% for three different drug concentrations and the limit of quantitation was 10 ng/ml. During the validation, short-term stability of the drug in plasma, stability during heat deactivation and on repeated freezing and thawing of plasma was evaluated. The overall recovery of indinavir by the ether extraction method was 91.4%. This HPLC assay was found to be a simple and reproducible method for monitoring indinavir levels in human plasma obtained during clinical trials of the drug.  相似文献   

19.
A sensitive and specific analytical method was developed for determination of Ro 19–6327 (Lazabemide) in human plasma and urine samples to provide pharmacokinetic data from clinical trials. The new method employs a simple liquid-liquid extraction to isolate the drug from biological samples. The extract is reacted to form the trifluoroacetyl derivative of Ro 19–6327 and then analyzed by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS). The lower limit of quantitation of the assay is 0.05 ng/ml for plasma and 5.0 ng/ml for urine, based on 1-ml aliquots. No interferences from anticoagulants, collection devices, or endogenous constituents of plasma and urine were observed. Recovery (64.3%), inter-assay precision (<8% R.S.D.), and accuracy (>85%) of the method were considered acceptable. The assay proved reliable enough to be automated for unattended sample analysis of approximately 50 samples daily. In an additional series of tests, Ro 19–6327 was shown to be stable under conditions that might be encountered during the analysis of samples from clinical trials.  相似文献   

20.
This work describes an assay system that has been developed to quantify raltegravir concentrations in human plasma using a liquid-liquid extraction technique paired with HPLC separation and MS-MS detection. The dynamic range of this assay extends from 1 to 3000 ng/mL, with a coefficient of determination (r(2), mean+/-SD) of 0.9992+/-0.0002. The mean precision values for calibration standards ranged from 0.6% to 3.0%, while accuracy values were 96.5-104.3%. This procedure is an accurate, precise, and sensitive method for raltegravir quantitation and was successfully validated using external proficiency testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号