首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction and rejoining of gamma-ray-induced DNA strand breaks were measured in a Chinese hamster ovary cell line, AA8, and in two radiosensitive clones (EM9 and NM2) derived from it. The kinetics of recovery from sublethal damage (SLD) and potentially lethal damage (PLD) has previously been characterized in each of these lines [vanAnkeren et al., Radiat. Res., 115, 223-237 (1988)]. No significant differences were observed among the cell lines in the yields of either DNA single-strand breaks (SSBs) or double-strand breaks (DSBs) as assayed by filter elution. Data for SSB rejoining in AA8 and NM2 cells irradiated with 7.5 Gy were fit by a biexponential process (t1/2 values of approximately 4 and 80 min). In comparison, SSB rejoining in EM9 cells was initially slower (t1/2 = 10 min) and a higher level of SSBs was unrejoined 6 h after irradiation. DSB rejoining in AA8 cells assayed at pH 9.6 was also biphasic (t1/2 values of 15 and 93 min), although when assayed at pH 7.0, most (approximately 80%) of the damage was rejoined at a constant rate (t1/2 = 45 min) during the first 2 h. EM9 cells exhibited a slower initial rate of DSB rejoining when assayed at pH 9.6 but showed no difference compared with AA8 cells in DSB rejoining when assayed at pH 7.0. These results indicate that radiosensitive EM9 cells, whose kinetics of recovery from SLD and PLD was the same as that of AA8 cells, have a defect in the fast phase of SSB rejoining but no measurable defect in DSB rejoining. Conversely, NM2 cells, which displayed a reduced shoulder width on their survival curve and decreased recovery from SLD, had no demonstrable defects in the rate or extent of rejoining of DSBs or SSBs. When compared with the SLD and PLD data reported previously, these results suggest that there is no direct correlation between either of these recovery processes and the rejoining of SSBs or DSBs as assayed here.  相似文献   

2.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

3.
EM9 cells are a line of Chinese hamster ovary cells that are sensitive to killing by ethylmethanesulfonate (EMS) and X ray, since they are unable to repair the DNA damage inflicted by these agents. Through DNA-mediated gene transfer, human DNA and a selectable marker gene, pSV2neo, were transfected into EM9 cells. Resistant clones of transfected cells were selected for by growth in EMS and G418 (an antibiotic lethal to mammalian cells not containing the transfected neo gene). One primary clone (APEX1) and one secondary clone (TEMS2) were shown to contain both marker and human DNA sequences by Southern blot. In cell survival studies, APEX1 was shown to be as resistant to EMS and X ray as the parental cell type AA8 (CHO cells). TEMS2 cells were found to be partially resistant to EMS and X ray, displaying an intermediate phenotype more sensitive than AA8 cells but more resistant than EM9 cells. Alkaline elution was used to assess the DNA strand-break rejoining ability of these cells at 23 degrees C. APEX1 cells showed DNA repair capacity equal to that of AA8 cells; 75% of the strand breaks were repaired with a rejoining T 1/2 of 3 min. TEMS2 showed similar levels of repair but a T 1/2 for repair of 9 min. EM9 cells repaired only 25% of the breaks and showed a T 1/2 for repair of 16 min. The DNA repair data are consistent with the survival data in that the more resistant cell lines showed a greater capacity for DNA repair. The data support the conclusion that APEX1 and TEMS2 cells contain a human DNA repair gene.  相似文献   

4.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

5.
The rejoining of single-strand breaks (SSBs) induced in plasmid DNA in the presence of 10 mmol dm(-3) Tris scavenger by aluminum K (Al(K)) ultrasoft X rays has been compared with that for SSBs induced by gamma radiation. The Al(K) ultrasoft X rays interact to produce low-energy secondary electrons, which are thought to be the main contributors to the formation of complex damage by low-LET radiations. The rejoining of radiation-induced SSBs was investigated using human whole cell extracts. The efficiency of rejoining of SSBs induced by Al(K) ultrasoft X rays is less than that observed for gamma-ray-induced SSBs. From the similarity of the extent of rejoining of SSBs induced by gamma rays under aerobic and anaerobic conditions, the chemical nature of the stand break termini does not significantly influence SSB rejoining. A simple nick induced in plasmid DNA by gpII protein is rejoined rapidly compared with the slower rejoining processes for radiation-induced SSBs. Therefore, ligation is not rate-determining in processing radiation-induced SSBs. This study provides further evidence that nonrejoining of radiation-induced SSBs reflects the complexity of DNA damage. From comparison of the extent of rejoining of SSBs induced by different radiations, it is inferred that double-strand breaks represent only a minor component of the overall yield of complex damage.  相似文献   

6.
J C Fox 《Mutation research》1990,235(2):41-47
The repair of ionising-radiation-induced DNA double-strand break type damage was measured by Kohn neutral elution in an X-ray-sensitive mutant of V79-4, irs1. This was done in order to investigate further the likelihood that irs1 carries a defect which leads to error-prone repair of DNA damage, and not simply a reduced ability to rejoin DNA double-strand breaks. The mutant displayed an equal increase in sensitivity to the lethal effects of neutrons, as compared to X-rays. Both irs1 and V79-4 showed an increased sensitivity to the killing effects of neutrons of around 2 at 10% survival. irs1 also showed an exponential survival after either X-rays or neutrons. The induction of DNA double-strand breaks was measured in both cell lines over a dose range of 10-40 Gy using Kohn neutral filter elution. Induction of breaks by X-rays in irs1 seemed to increase slightly with dose, relative to induction in V79-4, so that at 40 Gy 1.5 times more DNA double-strand breaks were measured in irs1 cells than in V79-4. Neutron irradiation resulted in a more similar level of induction in either strain after 10-40 Gy. This difference in induction of damage may be due to a different cell-cycle composition in either cell line. The rejoining of X-ray induced double-strand breaks showed a very similar pattern (on a percentage rejoined basis) in both cell lines, although from the induction data at 40 Gy, the dose at which rejoining was measured, fewer breaks were rejoined in V79-4 but also fewer breaks remained unsealed. Neutron-induced breaks, however, were rejoined more efficiently in irs1 again on a percentage basis, but also in absolute terms since similar induction was seen after 40 Gy. This data, together with the differences seen in the rejoining of X-ray compared to neutron induced breaks, may indirectly support the proposal that irs1 is a misrepair mutant.  相似文献   

7.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

8.
The influence of the nuclear ADP-ribosyltransferase inhibitor 3-aminobenzamide on the DNA strand-break rejoining kinetics and cytotoxicity in Chinese hamster ovary cells following H2O2 treatment was investigated. For the DNA damage studies, cells were treated on ice with H2O2 (0-20 microM) for 1 h in serum-free medium, after which the H2O2 was removed and the cells were allowed to repair their damage in complete medium at 37 degrees C in the presence or absence of 3-aminobenzamide (5 mM) for periods up to 2 h. The DNA strand breaks remaining as a function of time were then estimated by alkaline elution. A linear relationship between the H2O2 concentration and the initial level of DNA single-strand breaks (zero time allowed for repair) was observed. No double-strand breaks or DNA-protein cross-links were detected at these doses. The rejoining of single-strand breaks after H2O2 (20 microM) alone was characterized by a single exponential process with a t1/2 of approx. 5 min. However, in the presence of 3-aminobenzamide, rejoining was much slower and biphasic, with t1/2 of approx. 10 and 36 min. The inhibitory action of 3-aminobenzamide was concentration-dependent and completely reversible in that, when the 3-aminobenzamide was removed from the treated cultures, the strand-break rejoining kinetics rapidly returned to the t1/2 of 5 min typical of H2O2 alone. Considerably higher concentrations of H2O2 (up to 600 microM) were required for cell killing compared to the DNA damage studies. Cell killing by H2O2 alone was characterized by a shoulderless, exponential survival curve (D0 = 880 microM). The cytotoxicity was potentiated when the cells were treated with 3-aminobenzamide (5 mM) for 1 h after the H2O2 treatment; the survival curve with 3-aminobenzamide also assumed a biphasic character (D0 of 212 microM and 520 microM). These results are consistent with the theory that OH.-induced single-strand breaks do not normally represent lethal lesions to the cell because of their rapid, efficient repair. However, interference with these repair processes (in this case by 3-aminobenzamide) can alter this relationship, possibly allowing lesion fixation.  相似文献   

9.
F Cortés  T Ortiz 《Mutation research》1991,246(1):221-226
EcoRI restriction endonuclease (RE), which produces cohesive-ended double-strand breaks (dsb) in DNA, was tested in the ethyl methanesulfonate- and X-ray-sensitive CHO mutant EM9 and its parental cell strain AA8 for its chromosomal aberration-inducing effect. The RE was efficiently introduced by electroporation into AA8 cells, while the mutant cells showed a very high sensitivity to electroporation, which consistently resulted in cell death. Nevertheless, the incubation of EM9 cells in the presence of EcoRI, without electroporation, was sufficient to induce about three times the chromosome damage observed in the electroporated parental cell line AA8 for any given dose of the RE.  相似文献   

10.
We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was therefore probably a result of H2O2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought.  相似文献   

11.
端粒是位于真核细胞染色体末端的DNA-蛋白质复合体,在维持染色体稳定上起着重要的作用,并且与细胞的衰老和凋亡有着密切的关系.在各种DNA损伤中,单链断裂(single-strand breaks, SSBs)是最常见的类型之一,既可直接通过内源活性氧或离子化辐射产生,也可间接地在DNA代谢或碱基切除修复期间产生.已知多聚(ADP-核糖)聚合酶[poly(ADPribose) polymerase, PARP]在SSBs修复中起着极为重要的作用.本实验观察了PARP抑制剂3-氨基苯酰胺(3-aminobenzamide, 3-AB)对氧化应激诱导的HeLa细胞端粒DNA链断裂重连接的效应以及对过氧化氢(H2O2)抑制HeLa细胞增殖的影响.结果表明3-AB能够显著地抑制氧化应激诱导的HeLa细胞端粒DNA链断裂后的重连接作用,并能增强H2O2对HeLa细胞增殖的抑制作用,提示PARP参与了端粒DNA链断裂损伤的修复过程.  相似文献   

12.
DNA-ligase activities appear normal in the CHO mutant EM9   总被引:6,自引:1,他引:5  
The Chinese hamster ovary (CHO) mutant strain EM9 was previously shown to be hypersensitive to killing by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), to have a 12-fold increased baseline incidence of sister-chromatid exchanges (SCE), and to be defective in rejoining DNA strand breaks after treatment with EMS, MMS, or X-rays. A study was performed to determine if the primary biochemical defect might be a DNA ligase. DNA-ligase activities were assayed and compared after separation of the multiple forms of ligase by AcA 34 gel-filtration chromatography of total cellular extracts. In EM9 cells the levels of the presumptive replicative forms, DNA ligase Ia (480 kd) and ligase Ib (240 kd) were about 50% and 60%, respectively, of those in the parental AA8 cells, whereas DNA ligase II (80 kd) was unaltered in EM9 . In a phenotypic revertant line ( 9R1 ) ligases Ia, Ib and II levels were 35%, 37% and 100%, respectively, of those in AA8 . The reduced levels of ligases Ia and Ib in EM9 and 9R1 cells are apparently not related directly to the mutant phenotype and may be attributable to the somewhat slower growth rates of these strains compared with those of AA8 . To determine if the repair defect in EM9 might reside in the ability to induce DNA-ligase activity after treatment with a DNA-damaging agent, AA8 and EM9 cells were treated with MMS at 30 micrograms/ml for 60 min before preparing fractions for ligase assays. Under these conditions the activities of ligases Ia and Ib decreases 70-80% in both cell lines, but ligase II increased 2.0- and 2.6-fold, respectively, in AA8 and EM9 . As a further test of defective ligase activities in EM9 , assays were performed in the presence of 0.1 M NaCl or after heating the fractions for 10 min at 50 degrees C. Although all 3 forms of ligase showed altered activity under both of these conditions, there were no significant differences between EM9 and AA8 cells. These data combined with the above results provide strong evidence that the site of the primary defect in EM9 is not in either of the DNA ligases .  相似文献   

13.
Elaboration of cellular DNA breaks by hydroperoxides.   总被引:2,自引:0,他引:2  
Cellular damage produced by ionizing radiation and peroxides, hydrogen peroxide (HOOH) and the organic peroxides tert-butyl (tBuOOH) or cumene hydroperoxide (CuOOH) were compared. DNA breaks, toxicity, malondialdehyde production, and the rate of peroxide disappearance were measured in a human adenocarcinoma cell line (A549). The alkaline and neutral filter elution assays were used to quantitate the kinetics of single and double strand break formation and repair (SSB and DSB), respectively. Peroxides, at 0.01-1.0 mM, produce multiphasic dose response curves for both toxicity and DNA SSBs. Radiation, 1-6 Gy, produced a shouldered survival curve, and both DNA SSB and DSBs produced in cells x-rayed on ice were nearly linear with dose. The peroxides produced more SSBs than radiation at equitoxic doses. X-ray induced DNA single strand breaks were rejoined rapidly by cells at 37 degrees C with approximately 80% of initial damage repaired in 20 min. Peroxide induced SSBs were maximal after 15 min at 37 degrees C. Rejoining proceeded thereafter, but at a rate less than for x-ray induced strand breaks. Significant DNA DSBs could not be achieved by peroxides even at concentrations 50-fold higher than required to produce SSBs. HOOH treatment of DNA on filters following cell lysis and proteolysis produced SSBs. CuOOH and tBuOOH produced no SSBs in lysed cell DNA. None of the peroxides produced DSBs when incubated with lysed cell DNA. Malondialdehyde was released from cells incubated with organic hydroperoxides, but not HOOH, nor up to 40 Gy of x-rays. HOOH was metabolized three times faster than the organic peroxides. The overall results demonstrate the necessity for a metabolically active cell environment to elaborate maximal DNA strand breaks and cell death at hydroperoxide concentrations of 10(-4) or greater, but prevent strand breaks and stimulate cell growth at 10(-5) M.  相似文献   

14.
XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.  相似文献   

15.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

16.
Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.  相似文献   

17.
With the ultimate purpose of testing the existence of possible differences in the effectiveness of the topoisomerase II catalytic inhibitor ICRF-193 (a bisdioxopiperazine) and the enzyme suppressor bufalin (a bufadienolide from toad venom) we have carried out a series of experiments aimed at inducing cytotoxicity as well as DNA and chromosome damage in transformed CHO cells. In order to assess any possible influence of DNA repair capacity of the treated cells on the final outcome, we have made use of the repair-defective CHO mutant EM9, which shows a defect in DNA single- and double-strand breaks repair for comparison with its repair-proficient parental line AA8.Our results seem to indicate that, while both ICRF-193 and bufalin suppress cell growth and result in a clear inhibition of topoisomerase II catalytic activity, only ICRF-193 has been shown as able to induce both chromosome and DNA damage, with a more pronounced effect in the CHO mutant EM9 than in the repair-proficient line AA8.  相似文献   

18.
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.  相似文献   

19.
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.  相似文献   

20.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号