首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role(s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states.  相似文献   

2.
Regulators of G protein signaling (RGS) modulate G protein activity by functioning as GTPase-activating proteins (GAPs) for alpha-subunits of heterotrimeric G proteins. RGS14 regulates G protein nucleotide exchange and hydrolysis by acting as a GAP through its RGS domain and as a guanine nucleotide dissociation inhibitor (GDI) through its GoLoco motif. RGS14 exerts GDI activity on Galphai1, but not Galphao. Selective interactions are mediated by contacts between the alphaA and alphaB helices of the Galphai1 helical domain and the GoLoco C terminus (Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J., and Siderovski, D. P. (2002) Nature 416, 878-881). Three isoforms of Galphai exist in mammalian cells. In this study, we tested whether all three isoforms were subject to RGS14 GDI activity. We found that RGS14 inhibits guanine nucleotide exchange on Galphai1 and Galphai3 could, but not Galphai2. Galphai2 be rendered sensitive to RGS14 GDI activity by replacement of residues within the alpha-helical domain. In addition to the contact residues in the alphaA and alphaB helices previously identified, we found that the alphaA/alphaB and alphaB/alphaC loops are important determinants of Galphai selectivity. The striking selectivity observed for RGS14 GDI activity in vitro points to Galphai1 and Galphai3 as the likely targets of RGS14-GoLoco regulation in vivo.  相似文献   

3.
Regulator of G protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for Galpha subunits and negatively regulate G protein-coupled receptor signaling. Using RGS5 gene-specific RT-PCR, we have identified a novel alternative splicing variant of RGS5 mRNA in human ocular tissues. The alternative splicing of RGS5 mRNA occurred at position +44 (GenBank NM_003617), spliced out 174 bp (+44 to +218 bp) of the coding region, and encoded an RGS5s protein with a 108 amino acid N-terminal deletion. This study is the first to document alternative splicing of an RGS5 gene. We therefore studied RGS5 and RGS5s mRNA distribution in human tissues. In the eye, RGS5s was found to be highly expressed in the ciliary body and trabecular meshwork. It was also expressed in the kidney, brain, spleen, skeletal muscle and small intestine, but was not detectable in the liver, lung, heart. RGS5s was not found in monkey and rat ocular tissues, indicating species specificity for the eye. Comparing the recombinant RGS5 and RGS5s expression in HEK293/EBNA cells, RGS5s was present almost exclusively in the cytosolic fraction, whereas RGS5 was present in both membrane and cytosolic fractions. The data suggest that the N-terminal of RGS5 may be important for protein translocation to the cell membrane. Both RGS5 and RGS5s antagonized the rapid phosphorylation of p44/42 MAP kinase induced by Galphai coupled cannibinoid receptor-1 activation. RGS5, but not RGS5s, inhibited the Ca2+ signaling initiated by activation of Galphaq coupled angiotensin II receptors (AT1) and prostaglandin FP receptors. Cotransfection of RGS5s with RGS5 resulted in the blockade of RGS5 actions with respect to inhibition of the signal transduction initiated by activation of both AT1 and FP receptor, suggesting that RGS5s may contain functional domains that compete with RGS5 in the regulation of the Galphaq coupled AT1 and FP receptors. The unique expression pattern, cellular localization and functions of RGS5s suggest that RGS5s may play a critical role in the regulation of intracellular signaling pathways.  相似文献   

4.
5.
The recently discovered family of RGS (regulators of G protein signaling) proteins acts as GTPase activating proteins which bind to alpha subunits of heterotrimeric G proteins. We previously showed that a brain-specific RGS, RGS8 speeds up the activation and deactivation kinetics of the G protein-coupled inward rectifier K+ channel (GIRK) upon receptor stimulation (Saitoh, O., Kubo, Y., Miyatani, Y., Asano, T., and Nakata, H. (1997) Nature 390, 525-529). Here we report the isolation of a full-length rat cDNA of another brain-specific RGS, RGS7. In situ hybridization study revealed that RGS7 mRNA is predominantly expressed in Golgi cells within granule cell layer of cerebellar cortex. We observed that RGS7 recombinant protein binds preferentially to Galphao, Galphai3, and Galphaz. When co-expressed with GIRK1/2 in Xenopus oocytes, RGS7 and RGS8 differentially accelerate G protein-mediated modulation of GIRK. RGS7 clearly accelerated activation of GIRK current similarly with RGS8 but the acceleration effect of deactivation was significantly weaker than that of RGS8. These acceleration properties of RGS proteins may play important roles in the rapid regulation of neuronal excitability and the cellular responses to short-lived stimulations.  相似文献   

6.
The intracellular regulator of G protein signalling (RGS) proteins were first identified as GTPase activating proteins (GAPs) for heterotrimeric G proteins, however, it was later found that they can also regulate G protein-effector interactions in other ways that are still not well understood. There is increasing evidence that some of the effects of RGS proteins occur due to their ability to interact with multiprotein signalling complexes. In this review, we will discuss recent evidence that supports the idea that RGS proteins can bind to proteins other than Galpha, such as G protein coupled receptors (GPCRs, e.g. muscarinic, dopaminergic, adrenergic, angiotensin, interleukin and opioid receptors) and effectors (e.g. adenylyl cyclase, GIRK channels, PDEgamma, PLC-beta and Ca(2+) channels). Furthermore, we will investigate novel RGS binding partners (e.g. GIPC, spinophilin, 14-3-3) that underlie the formation of signalling scaffolds or govern RGS protein availability and/or activity.  相似文献   

7.
RGS proteins (regulators of G protein signaling) are potent accelerators of the intrinsic GTPase activity of G protein alpha subunits (GAPs), thus controlling the response kinetics of a variety of cell signaling processes. Most RGS domains that have been studied have relatively little GTPase activating specificity especially for G proteins within the Gi subfamily. Retinal RGS9 is unique in its ability to act synergistically with a downstream effector cGMP phosphodiesterase to stimulate the GTPase activity of the alpha subunit of transducin, Galphat. Here we report another unique property of RGS9: high specificity for Galphat. The core (RGS) domain of RGS9 (RGS9) stimulates Galphat GTPase activity by 10-fold and Galphai1 GTPase activity by only 2-fold at a concentration of 10 microM. Using chimeric Galphat/Galphai1 subunits we demonstrated that the alpha-helical domain of Galphat imparts this specificity. The functional effects of RGS9 were well correlated with its affinity for activated Galpha subunits as measured by a change in fluorescence of a mutant Galphat (Chi6b) selectively labeled at Cys-210. Kd values for RGS9 complexes with Galphat and Galphai1 calculated from the direct binding and competition experiments were 185 nM and 2 microM, respectively. The gamma subunit of phosphodiesterase increases the GAP activity of RGS9. We demonstrate that this is because of the ability of Pgamma to increase the affinity of RGS9 for Galphat. A distinct, nonoverlapping pattern of RGS and Pgamma interaction with Galphat suggests a unique mechanism of effector-mediated GAP function of the RGS9.  相似文献   

8.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits and negatively regulate G protein-mediated signal transduction. In this study, we determined the cDNA sequence of a novel Caenorhabditis elegans (C. elegans) RGS protein. The predicted protein, termed C2-RGS, consists of 782 amino acids, and contains a C2 domain and an RGS domain. C2 domains are typically known to be Ca(2+) and phospholipid binding sites, found in many proteins involved in membrane traffic or signal transduction, and most of their biological roles are not identified. To study the function of C2-RGS protein, a series of six truncated versions of C2-RGS were constructed. When the full-length protein of C2-RGS was expressed transiently in AT1a-293T cells, ET-1-induced Ca(2+) responses were strongly suppressed. When each of the mutants with either RGS domain or C2 domain was expressed, the Ca(2+) responses were suppressed moderately. Furthermore, we found that C2 domain of PLC-beta1 also had a similar moderate inhibitory effect. RGS domain of C2-RGS bound to mammalian and C. elegans Galphai/o and Galphaq subunits only in the presence of GDP/AlF(4)(-), and had GAP activity to Galphai3. On the other hand, C2 domains of C2-RGS and PLC-beta1 also bound strongly to Galphaq subunit, in the presence of GDP, GDP/AlF(4)(-), and GTPgammaS, suggesting the stable persistent association between these C2 domains and Galphaq subunit at any stage during GTPase cycle. These results indicate that both the RGS domain and the C2 domain are responsible for the inhibitory effect of the full-length C2-RGS protein on Galphaq-mediated signaling, and suggest that C2 domains of C2-RGS and PLC-beta1 may act as a scaffold module to organize Galphaq and the respective whole protein molecule in a stable signaling complex, both in the absence and presence of stimulus.  相似文献   

9.
Regulator of G-protein signaling 5 (RGS5), an inhibitor of Gq and Gi activation, is a member of the small RGS protein subfamily. However, despite significant process in the investigation of RGS5, no structure is yet available. In order to elucidate the mechanism of the RGS5 in G protein signaling pathway, we have overexpressed the RGS5 and Galphai(3) from human in Escherichia coli and crystallized the complex of RGS5 and Galphai(3) proteins with GDP/Mg(2+)/AlF(4)(-) at 3.0 A resolution using a synchrotron radiation source. The complex crystals belong to the tetragonal space group P4(1)2(1)2 or P4(3)2(1)2, with unit cell parameters a=b=95.9 A, and c=138.8 A. Assuming one complex protein in the crystallographic asymmetric unit, the calculated Matthews parameter (V(M)) is 2.57 A(3)/Da and solvent content is 52.2 %.  相似文献   

10.
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3β and 14-3-3ε, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3ε competes with Go for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3ε sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by G protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with G, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.  相似文献   

11.
Regulator of G protein signaling (RGS) proteins play a crucial role in the adaptation of cells to stimulation by G protein-coupled receptors via heterotrimeric G proteins. Alterations in RGS function have been implicated in a wide range of disease states, leading to many researchers focusing on controlling the action of these regulatory proteins. Previous studies have centered on reducing or inhibiting the action of RGS proteins, utilizing inactive mutants or small molecular RGS inhibitors. Here we describe the isolation and characterization of a novel human RGS4 mutant which displays enhanced or gain-of-function (GOF) activity. RGS4(S30C) demonstrates GOF activity both in an in vivo yeast-based signalling pathway and in vitro against the Galpha(o1) subunit contained in an alpha(2A)-adrenoreceptor-Galpha(o1)(C351I) fusion protein. Mutational analysis of serine 30 identified a number of alternative substitutions that result in GOF activity. GOF activity was retained upon transposition of the serine 30-cysteine mutation to the equivalent serine residue in human RGS16. As with previously identified GOF mutants, RGS4(S30C/S30F/S30K) demonstrate increased steady state protein levels, however these mutants also demonstrate enhanced GAP activity through an additional mechanism distinct from the increased protein content. The identification of human RGS mutants with GOF activity may provide novel therapeutic agents for the treatment of signaling-based diseases and the ability to transpose these mutations to other human RGS proteins extends their application to multiple pathways.  相似文献   

12.
We have recently shown that a critical regulatory node in the platelet signaling network lies immediately downstream of platelet receptors for thrombin and TxA2. This node is comprised of a scaffold protein (spinophilin, SPL), a protein tyrosine phosphatase (SHP-1), and either of the two members of the Regulators of G protein Signaling family predominantly expressed in platelets (RGS10 or RGS18). The SPL/RGS/SHP-1 complex is present in resting platelets, dissociating when thrombin or TxA2, but not ADP or collagen, activate SHP-1 and release RGS10 and RGS18 to dampen signaling. Here we demonstrate an additional regulatory role for spinophilin, showing that dissociation of SHP-1 from spinophilin is followed by an increase in the binding of spinophilin to PP1, a serine/threonine phosphatase whose binding site maps to a region close to the SHP-1 binding site. The increase in PP1 binding to spinophilin is limited to platelet agonists that cause dissociation of the complex and is selective for the α and γ isoforms of PP1. Studies in cell culture show that SHP-1 and PP1 can compete for binding to spinophilin and that binding inhibits PP1 activity since over-expression of wild type spinophilin, but not spinophilin with a disabled PP1 binding site, causes an increase in the phosphorylation of myosin light chain, a well-characterized PP1 substrate. Collectively, these results indicate that in addition to regulating RGS protein availability in resting platelets, spinophilin can serve as a time-dependent, agonist- and isoform-selective regulator of PP1, inhibiting its activity when decay of the SPL/RGS/SHP-1 complex releases SHP-1 from spinophilin, exposing a binding site for PP1.  相似文献   

13.
RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.  相似文献   

14.
A subfamily of regulators of G protein signaling (RGS) proteins consisting of RGS6, -7, -9, and -11 is characterized by the presence of a unique Ggamma-like domain through which they form obligatory dimers with the G protein subunit Gbeta5 in vivo. In Caenorhabditis elegans, orthologs of Gbeta5.RGS dimers are implicated in regulating both Galphai and Galphaq signaling, and in cell-based assays these dimers regulate Galphai/o- and Galphaq/11-mediated pathways. However, initial studies with purified Gbeta5.RGS6 or Gbeta5.RGS7 showed that they only serve as GTPase activating proteins for Galphao. Pull-down assays and co-immunoprecipitation with these dimers failed to detect their binding to either Galphao or Galphaq, indicating that the interaction might require additional factors present in vivo. Here, we asked if the RGS7.Gbeta5 complex binds to Galphaq using fluorescence resonance energy transfer (FRET) in transiently transfected mammalian cells. RGS7, Gbeta5, and Galpha subunits were tagged with yellow variants of green fluorescent protein. First we confirmed the functional activity of the fusion proteins by co-immunoprecipitation and also their effect on signaling. Second, we again demonstrate the interaction between RGS7 and Gbeta5 using FRET. Finally, using both FRET spectroscopy on cell suspensions and microscopy of individual cells, we showed FRET between the yellow fluorescence protein-tagged RGS7.Gbeta5 complex and cyan fluorescence protein-tagged Galphaq, indicating a direct interaction between these molecules.  相似文献   

15.
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.  相似文献   

16.
17.
Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.  相似文献   

18.
Regulator of G protein signaling (RGS) proteins modulate signaling through pathways that use heterotrimeric G proteins as transducing elements. RGS1 is expressed at high levels in certain B cell lines and can be induced in normal B cells by treatment with TNF-alpha. To determine the signaling pathways that RGS1 may regulate, we examined the specificity of RGS1 for various G alpha subunits and assessed its effect on chemokine signaling. G protein binding and GTPase assays revealed that RGS1 is a Gi alpha and Gq alpha GTPase-activating protein and a potential G12 alpha effector antagonist. Functional studies demonstrated that RGS1 impairs platelet activating factor-mediated increases in intracellular Ca+2, stromal-derived factor-1-induced cell migration, and the induction of downstream signaling by a constitutively active form of G12 alpha. Furthermore, germinal center B lymphocytes, which are refractory to stromal-derived factor-1-triggered migration, express high levels of RGS1. These results indicate that RGS proteins can profoundly effect the directed migration of lymphoid cells.  相似文献   

19.
《Cellular signalling》2014,26(9):1846-1852
The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor–Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.  相似文献   

20.
Normal lymphoid tissue development and function depend upon directed cell migration. Providing guideposts for cell movement and positioning within lymphoid tissues, chemokines signal through cell surface receptors that couple to heterotrimeric G proteins, which are in turn subject to regulation by regulator of G protein signaling (RGS) proteins. In this study, we report that germinal center B lymphocytes and thymic epithelial cells strongly express one of the RGS family members, RGS13. Located between Rgs1 and Rgs2, Rgs13 spans 42 kb on mouse chromosome 1. Rgs13 encodes a 157-aa protein that shares 82% amino acid identity with its 159-aa human counterpart. In situ hybridization with sense and antisense probes localized Rgs13 expression to the germinal center regions of mouse spleens and Peyer's patches and to the thymus medulla. Affinity-purified RGS13 Abs detected RGS13-expressing cells in the light zone of the germinal center. RGS13 interacted with both Gialpha and Gqalpha and strongly impaired signaling through G(i)-linked signaling pathways, including signaling through the chemokine receptors CXCR4 and CXCR5. Prolonged CD40 signaling up-regulated RGS13 expression in human tonsil B lymphocytes. These results plus previous studies of RGS1 indicate the germinal center B cells use two RGS proteins, RGS1 and RGS13, to regulate their responsiveness to chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号