首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transformation of trinitrotoluene (TNT) by several mutant strains of Clostridium acetobutylicum has been examined to analyze the maximal rate of initial transformation, determine the effects of metabolic mutations of the host on transformation rate, and to assess the cell metabolic changes brought about during TNT transformation. Little difference in the maximal rate of TNT degradation in early acid phase cultures was found between the parental ATCC 824 strain and strains altered in the acid forming pathways (phosphotransacetylase, or butyrate kinase) or in a high-solvent-producing strain (mutant B). This result is in agreement with the previous findings of a similar degradation rate in a degenerate strain (M5) that had lost the ability to produce solvent. A series of antisense constructs were made that reduced the expression of hydA, encoding the Fe-hydrogenase, or hydE and hydF, genes encoding hydrogenase maturating proteins. While the antisense hydA strain had only ~30 % of the activity of wild type, the antisense hydE strain exhibited a TNT degradation rate around 70 % that of the parent. Overexpression of hydA modestly increased the TNT degradation rate in acid phase cells, suggesting the amount of reductant flowing into hydrogenase rather than the hydrogenase level itself was a limiting factor in many situations. The redox potential, hydrogen evolution, and organic acid metabolites produced during rapid TNT transformation in early log phase cultures were measured. The redox potential of the acid-producing culture decreased from ?370 to ?200 mV immediately after addition of TNT and the hydrogen evolution rate decreased, lowering the hydrogen to carbon dioxide ratio from 1.4 to around 1.1 for 15 min. During the time of TNT transformation, the treated acidogenic cells produced less acetate and more butyrate. The results show that during TNT transformation, the cells shift metabolism away from hydrogen formation to reduction of TNT and the resulting effects on cell redox cofactors generate a higher proportion of butyrate.  相似文献   

2.
In this study, we evaluated the effectiveness of lake sediment as inoculum for hydrogen production through dark fermentation in a repeated batch process. In addition, we investigated the effect of heat treatment, applied to enrich hydrogen-producing bacteria, on the bacterial composition and metabolism. Denaturing gradient gel electrophoresis and molecular cloning, both performed using the 16S rDNA gene as target gene, were used to monitor the structure of the bacterial community. Hydrogen production and bacterial metabolism were analysed via gas chromatography and high-performance liquid chromatography. Both treated and non-treated inocula were able to produce high amounts of hydrogen. However, statistical analysis showed a clear difference in their bacterial composition and metabolism. The heat treatment favoured the growth of different Clostridia sp., in particular of Clostridium bifermentans, allowing the production of a constant amount of hydrogen over prolonged time. These cultures showed both butyrate and ethanol fermentation types. Absence of heat treatment allowed species belonging to the genera Bacillus, Sporolactobacillus and Massilia to outgrow Clostridia sp. with a reduction in hydrogen production and a significant metabolic change. Our data indicate that lake sediment harbours bacteria that can efficiently produce hydrogen over prolonged fermentation time. Moreover, we could show that the heat treatment stabilizes the bacterial community composition and the hydrogen production.  相似文献   

3.
Metabolomics, or metabolite profiling, is an approach that is increasingly used to study the metabolism of diverse organisms, elucidate biological processes and/or find characteristic biomarkers of physiological states. Here, we describe the optimization of a method for global metabolomic analysis of bacterial cultures, with the following steps. Cells are grown to log-phase, starting from an overnight culture and bacterial concentrations are monitored by measuring the optical density of the cultures at 600 nm. At an appropriate density they are harvested by centrifugation, washed three times with NaCl solution and metabolites are extracted using methanol and a bead-mill. Dried extracts are methoxymated and derivatized with methyltrimethylsilyltrifluoroacetamide (MSTFA) then analyzed using gas chromatography coupled to time-of-flight mass spectrometry (GC-MS/TOF). Finally, patterns in the acquired data are examined by multivariate data modeling. This method enabled us to obtain reproducible metabolite profiles of Yersinia pseudotuberculosis, with about 25% compound identification, based on comparison with entries in available GC-MS libraries. To assess the potential utility of the method for comparative analysis of other bacterial species we analyzed cultures of Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli and methicillin-sensitive Staphylococcus aureus (MSSA). Multivariate analysis of the acquired data showed that it was possible to differentiate the species according to their metabolic profiles. Our results show that the presented procedure can be used for metabolomic analysis of a wide range of bacterial species of clinical interest.  相似文献   

4.
The decline of European abalone Haliotis tuberculata populations has been associated with various pathogens including bacteria of the genus Vibrio. Following the summer mortality outbreaks reported in France between 1998 and 2000, Vibrio harveyi strains were isolated from moribund abalones, allowing in vivo and in vitro studies on the interactions between abalone H. tuberculata and V. harveyi. This work reports the development of primary cell cultures from abalone gill tissue, a target tissue for bacterial colonisation, and their use for in vitro study of host cell—V. harveyi interactions. Gill cells originated from four-day-old explant primary cultures were successfully sub-cultured in multi-well plates and maintained in vitro for up to 24 days. Cytological parameters, cell morphology and viability were monitored over time using flow cytometry analysis and semi-quantitative assay (XTT). Then, gill cell cultures were used to investigate in vitro the interactions with V. harveyi. The effects of two bacterial strains were evaluated on gill cells: a pathogenic bacterial strain ORM4 which is responsible for abalone mortalities and LMG7890 which is a non-pathogenic strain. Cellular responses of gill cells exposed to increasing concentrations of bacteria were evaluated by measuring mitochondrial activity (XTT assay) and phenoloxidase activity, an enzyme which is strongly involved in immune response. The ability of gill cells to phagocyte GFP-tagged V. harveyi was evaluated by flow cytometry and gill cells-V. harveyi interactions were characterized using fluorescence microscopy and transmission electron microscopy. During phagocytosis process we evidenced that V. harveyi bacteria induced significant changes in gill cells metabolism and immune response. Together, the results showed that primary cell cultures from abalone gills are suitable for in vitro study of host-pathogen interactions, providing complementary assays to in vivo experiments.  相似文献   

5.
Trans-kingdom conjugation is a phenomenon by which DNA is transferred into a eukaryotic cell by a bacterial conjugal transfer system. Improvement in this method to facilitate the rapid co-cultivation of donor bacterial and recipient eukaryotic cell cultures could make it the simplest transformation method, requiring neither isolation of vector DNA nor preparation of competent recipient cells. To evaluate this potential advantage of trans-kingdom conjugation, we examined this simple transformation method using vector combinations, helper plasmids, and recipient Saccharomyces cerevisiae strains. Mixing donor Escherichia coli and recipient S. cerevisiae overnight cultures (50 μL each) consistently yielded on the order of 101 transformants using the popular experimental strain BY4742 derived from S288c and a shuttle vector for trans-kingdom conjugation. Transformation efficiency increased to the order of 102 using a high receptivity trans-kingdom conjugation strain. In addition, either increasing the amount of donor cells or pretreating the recipient cells with thiols such as dithiothreitol improved the transformation efficiency by one order of magnitude. This simple trans-kingdom conjugation-mediated transformation method could be used as a practical yeast transformation method upon enrichment of available vectors and donor E. coli strains.  相似文献   

6.
Hydrogenases are enzymes that play a key role in controlling excess reducing equivalents in both photosynthetic and anaerobic organisms. This enzyme is viewed as potentially important for the industrial generation of hydrogen gas; however, insufficient hydrogen production has impeded its use in a commercial process. Here, we explore the potential to circumvent this problem by directly evolving the Fe⿿Fe hydrogenase genes from two species of Clostridia bacteria. In addition, a computational model based on these mutant sequences was developed and used as a predictive aid for the isolation of enzymes with even greater efficiency in hydrogen production. Two of the improved mutants have a logarithmic increase in hydrogen production in our in vitro assay. Furthermore, the model predicts hydrogenase sequences with hydrogen productions as high as 540-fold over the positive control. Taken together, these results demonstrate the potential of directed evolution to improve the native bacterial hydrogenases as a first step for improvement of hydrogenase activity, further in silico prediction, and finally, construction and demonstration of an improved algal hydrogenase in an in vivo assay of C. reinhardtii hydrogen production.  相似文献   

7.
β-galactosidase, encoded by the lacZ gene in E. coli, can cleave lactose and structurally related compounds to galactose and glucose or structurally related products. Its activity can be measured using an artificial substrate, o-nitrophenyl-β-D-galactopyranoside (ONPG). Miller firstly described the standard quantitative assay of β-galactosidase activity in the cells of bacterial cultures by disrupting the cell membrane with the permeabilization solution instead of preparing cell extracts. Therefore, β-galactosidase became one of the most widely used reporters of gene expression in molecular biology to reflect intracellular gene expression difference. But the Miller assay procedure could not monitor the β-galactosidase reaction in real time and its results were greatly influenced by some operations in the Miller procedure, such as permeabilization time, reaction time and concentration of the cell suspension. A scanning method based on the Miller method to determine the intracellular β-galactosidase activity in E. coli Tuner (DE3) expressing β-galactosidase in real time was developed and the permeabilization time of cells was optimized for that. The comparison of 3 assays of β-galactosidase activity (Miller, colorimetric and scanning) was made. The results proved that scanning method for the determination of enzyme activity with using ONPG as substrate is simple, fast and reproducible.  相似文献   

8.
Escherichia coli O157:H7 can persist for days to weeks in microcosms simulating natural conditions. In this study, we used a suite of fluorescent, in situ stains and probes to assess the influence of starvation on physiological activity based on membrane potential (rhodamine 123 assay), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-di-4-tolyl-tetrazolium chloride assay), intracellular esterase activity (ScanRDI assay), and 16S rRNA content. Growth-dependent assays were also used to assess substrate responsiveness (direct viable count [DVC] assay), ATP activity (MicroStar assay), and culturability (R2A agar assay). In addition, resistance to chlorine disinfection was assessed. After 14 days of starvation, the DVC values decreased, while the values in all other assays remained relatively constant and equivalent to each other. Chlorine resistance progressively increased through the starvation period. After 29 days of starvation, there was no significant difference in chlorine resistance between control cultures that had not been exposed to the disinfectant and cultures that had been exposed. This study demonstrates that E. coli O157:H7 adapts to starvation conditions by developing a chlorine resistance phenotype.  相似文献   

9.
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.  相似文献   

10.
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.  相似文献   

11.
Phosphoglycolate and phosphoglycerate phosphatases and glycolate dehydrogenase activities were determined in division synchronized Euglena gracilis strain Z cultures. Phosphoglycolate phosphatase activity remained nearly constant in the light but doubled in the dark, whereas phosphoglycerate phosphatase activity decreased by half in the light and increased 4-fold over the dark phase of the cycle. Glycolate dehydrogenase activity assayed by dye reduction increased over the light and remained constant during the dark phase, but when determined by the phenylhydrazone method, an assay dependent upon the presence of a natural hydrogen acceptor, activity decreased in the dark phase. The acceptor decayed in the dark in all cell-free extracts and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea inhibited light regeneration.  相似文献   

12.
《Phytochemistry》1987,26(5):1321-1324
The transformation ofmethoxy derivatives of benzoic acid 14C labelled in the ring or in the methoxyl or carboxyl groups were determined in the cultures of five selected strains of Nocardia autotrophica. It was shown that the transformation of vanillic acid to protocatechuic acid might proceed through guaiacol and isovanillic acid as intermediates. This metabolic conversion was found in three of the five bacterial strains examined.  相似文献   

13.
Many whole cell screens of chemical libraries currently in use are based on inhibition of bacterial growth. The goal of this study was to develop a chemical library screening model that enabled detection of compounds that are active against drug-tolerant non-growing cultures of Mycobacterium tuberculosis. An in vitro model of low metabolically active mycobacteria was established with 8 and 30 day old cultures of M. smegmatis and M. tuberculosis, respectively. Reduction of resazurin was used as a measure of viability and the assay was applied in screens of chemical libraries for bactericidal compounds. The model provided cells that were phenotypically-resilient to killing by first and second-line clinical drugs including rifampicin. Screening against chemical libraries identified proteasome inhibitors, NSC310551 and NSC321206, and a structurally-related series of thiosemicarbazones, as having potent killing activity towards aged cultures. The inhibitors were confirmed as active against virulent M. tuberculosis strains including multi- and extensively-drug resistant clinical isolates. Our library screen enabled detection of compounds with a potent level of bactericidal activity towards phenotypically drug-tolerant cultures of M. tuberculosis.  相似文献   

14.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

15.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

16.
《Gene》1997,192(1):179-190
In natural transformation, DNA in the form of macromolecular fragments can be translocated across the cell envelope of prokaryotic microorganisms. During the past two decades, several, largely mutually contradictory, hypotheses have been forwarded to explain the molecular mechanism and bioenergetics of this translocation process. Other biomacromolecules are translocated across the bacterial cell envelope as well, such as polysaccharides and proteins, the latter for instance in the process of the assembly of type-IV pili. This brings up the question whether or not common components are involved.Here, we review analyses of DNA translocation in Acinetobacter calcoaceticus, a Gram-negative eubacterium that is able to migrate through twitching motility, and also shows a high frequency of natural transformation. DNA uptake in this organism is an energy-dependent process. Upon entry into the cells, the DNA fragments are integrated into the resident chromosome when a sufficiently large region of mutual homology is available (200 to 400 bp). However, this process is rather inefficient, and on the average 500 bp of each incoming fragment is degraded through exonuclease activity. Upon covalent attachment of a bulky protein molecule to the transforming DNA, the DNA-translocation machinery becomes blocked in further translocation activity.Since A. calcoaceticus is not well suited for transposon mutagenesis, a random mutagenesis procedure has been developed, based on the ligation of an antibiotic-resistance marker to random fragments of chromosomal DNA. This method was used to generate several mutants impaired in the natural transformation process. Three of these have been characterized in detail. No components, common to the translocation of macromolecules through the cell envelope of Acinetobacter, have been detected in this screen.  相似文献   

17.
Pure bacterial cultures were isolated from a highly enriched denitrifying consortium previously shown to anaerobically biodegrade naphthalene. The isolates were screened for the ability to grow anaerobically in liquid culture with naphthalene as the sole source of carbon and energy in the presence of nitrate. Three naphthalene-degrading pure cultures were obtained, designated NAP-3-1, NAP-3-2, and NAP-4. Isolate NAP-3-1 tested positive for denitrification using a standard denitrification assay. Neither isolate NAP-3-2 nor isolate NAP-4 produced gas in the assay, but both consumed nitrate and NAP-4 produced significant amounts of nitrite. Isolates NAP-4 and NAP-3-1 transformed 70 to 90% of added naphthalene, and the transformation was nitrate dependent. No significant removal of naphthalene occurred under nitrate-limited conditions or in cell-free controls. Both cultures exhibited partial mineralization of naphthalene, representing 7 to 20% of the initial added 14C-labeled naphthalene. After 57 days of incubation, the largest fraction of the radiolabel in both cultures was recovered in the cell mass (30 to 50%), with minor amounts recovered as unknown soluble metabolites. Nitrate consumption, along with the results from the 14C radiolabel study, are consistent with the oxidation of naphthalene coupled to denitrification for NAP-3-1 and nitrate reduction to nitrite for NAP-4. Phylogenetic analyses based on 16S ribosomal DNA sequences of NAP-3-1 showed that it was closely related to Pseudomonas stutzeri and that NAP-4 was closely related to Vibrio pelagius. This is the first report we know of that demonstrates nitrate-dependent anaerobic degradation and mineralization of naphthalene by pure cultures.  相似文献   

18.
We report a plant (Beta vulgaris L. subsp. vulgaris.) cell culture-mediated reduction of prochiral 1-(3,4-dimethylphenyl)ethanone into the chiral alcohol (1R)-1-(3,4-dimethylphenyl)ethanol in natural deep eutectic solvents (NADES). To the best of our knowledge, this is the first report on plant culture cell behaviour during incubation in these solvents, where the novelty is transformation in callus culture. Three different choline chloride-based NADES (aqueous solutions containing 30, 50 and 80 % water [w/w]) containing sugar (glucose) or polyalcohols (glycerol and ethylene glycol) were screened for conversion and enantiomeric excess during the bioreduction. Both the conversion and the enantiomeric excess differed considerably when using different hydrogen bond donors, with the (R)-alcohol configuration predominating in the reactions conducted in most NADES. Changing the water content in NADES also altered the enantioselectivity. Testing the biocompatibility of NADES with sugar beet cell cultures revealed that NADES cause permeabilisation of cell membranes, leading to stress conditions that change plant metabolism. The potential for recycling and reusing plant biomass was tested for sugar beet cell cultures. The results indicate that recycling may be possible after 3–7 days of incubation, but longer incubations lead to too high a toxicity to cellular metabolism.  相似文献   

19.
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号