首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic organisms, horizontal gene transfer (HGT) is regarded as an important though infrequent source of reticulate evolution. Many confirmed instances of natural HGT involving multicellular eukaryotes come from flowering plants. This review intends to provide a synthesis of present knowledge regarding HGT in higher plants, with an emphasis on tobacco and other species in the Solanaceae family because there are numerous detailed reports concerning natural HGT events, involving various donors, in this family. Moreover, in-depth experimental studies using transgenic tobacco are of great importance for understanding this process. Valuable insights are offered concerning the mechanisms of HGT, the adaptive role and regulation of natural transgenes, and new routes for gene trafficking. With an increasing amount of data on HGT, a synthetic view is beginning to emerge.  相似文献   

2.
The long-term dynamics of mobile plasmids in natural environments are unclear. This is the first study of the long-term dynamics of introduced plasmids with xenobiotic degradation abilities using a mathematical model that describes the horizontal gene transfer (HGT) of plasmids into indigenous bacteria via conjugation. We focussed on negative feedback between the spread of plasmids and their selective advantage, i.e. the severe competition between plasmid-bearing and plasmid-free bacteria resulting from a decrease in xenobiotic concentration caused by the gene expression of plasmids, favoring plasmid-free bacteria. Two types of HGT enhanced the persistence of plasmids and the degradation of the xenobiotic in different conditions: a relatively low rate of 'intergeneric HGT' from introduced to indigenous bacteria and a high rate of 'intraindigenous HGT' from indigenous to indigenous bacteria. In addition, when the indigenous resource supply rate was high and when the cost of bearing plasmids was low, both types of HGT made large contributions to xenobiotic degradation compared to the contribution of vertical transfer via plasmid replication within the introduced host population. Initial conditions were also important; a higher initial density of introduced plasmid-bearing bacteria led to a lower degradation rate over a long time scale.  相似文献   

3.
Plant pathogenic fungi adapt quickly to changing environments including overcoming plant disease resistance genes. This is usually achieved by mutations in single effector genes of the pathogens, enabling them to avoid recognition by the host plant. In addition, horizontal gene transfer (HGT) and horizontal chromosome transfer (HCT) provide a means for pathogens to broaden their host range. Recently, several reports have appeared in the literature on HGT, HCT and hybridization between plant pathogenic fungi that affect their host range, including species of Stagonospora/Pyrenophora, Fusarium and Alternaria. Evidence is given that HGT of the ToxA gene from Stagonospora nodorum to Pyrenophora tritici-repentis enabled the latter fungus to cause a serious disease in wheat. A nonpathogenic Fusarium species can become pathogenic on tomato by HCT of a pathogenicity chromosome from Fusarium oxysporum f.sp lycopersici, a well-known pathogen of tomato. Similarly, Alternaria species can broaden their host range by HCT of a single chromosome carrying a cluster of genes encoding host-specific toxins that enabled them to become pathogenic on new hosts such as apple, Japanese pear, strawberry and tomato, respectively. The mechanisms HGT and HCT and their impact on potential emergence of fungal plant pathogens adapted to new host plants will be discussed.  相似文献   

4.
Monitoring and modeling horizontal gene transfer   总被引:1,自引:0,他引:1  
Monitoring efforts have failed to identify horizontal gene transfer (HGT) events occurring from transgenic plants into bacterial communities in soil or intestinal environments. The lack of such observations is frequently cited in biosafety literature and by regulatory risk assessment. Our analysis of the sensitivity of current monitoring efforts shows that studies to date have examined potential HGT events occurring in less than 2 g of sample material, when combined. Moreover, a population genetic model predicts that rare bacterial transformants acquiring transgenes require years of growth to out-compete wild-type bacteria. Time of sampling is there-fore crucial to the useful implementation of monitoring. A population genetic approach is advocated for elucidating the necessary sample sizes and times of sampling for monitoring HGT into large bacterial populations. Major changes in current monitoring approaches are needed, including explicit consideration of the population size of exposed bacteria, the bacterial generation time, the strength of selection acting on the transgene-carrying bacteria, and the sample size necessary to verify or falsify the HGT hypotheses tested.  相似文献   

5.

Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.

  相似文献   

6.
The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)–Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR–Cas maintenance and one of the causes of the patchy distribution of CRISPR–Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR–Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR–Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.  相似文献   

7.
Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.  相似文献   

8.
Horizontal gene transfer (HGT) is thought to be an important driving force for microbial evolution and niche adaptation and has been show in vitro to occur frequently in biofilm communities. However, the extent to which HGT takes place and what functions are being transferred in more complex and natural biofilm systems remains largely unknown. To address this issue, we investigated here HGT and enrichment of gene functions in the biofilm community of the common kelp (macroalgae) Ecklonia radiata in comparison to microbial communities in the surrounding seawater. We found that HGTs in the macroalgal biofilms were dominated by transfers between bacterial members of the same class or order and frequently involved genes for nutrient transport, sugar and phlorotannin degradation as well as stress responses, all functions that would be considered beneficial for bacteria living in this particular niche. HGT did not appear to be driven by mobile gene elements, indicating rather an involvement of unspecific DNA uptake (e.g. natural transformation). There was also a low overlap between the gene functions subject to HGT and those enriched in the biofilm community in comparison to planktonic community members. This indicates that much of the functionality required for bacteria to live in an E. radiata biofilm might be derived from vertical or environmental transmissions of symbionts. This study enhances our understanding of the relative role of evolutionary and ecological processes in driving community assembly and genomic diversity of biofilm communities.Subject terms: Biofilms, Metagenomics  相似文献   

9.
田琇  张利  刘马峰 《微生物学通报》2019,46(7):1723-1730
基因的水平转移在细菌的进化中起着非常重要的作用。自然界中的细菌之间主要通过3种机制进行基因水平转移:由噬菌体介导的转导、接合转移和自然转化。自然转化是指自然感受态的细菌能够自发地从外界环境中摄取DNA分子并整合到自身基因组上的过程。该现象首先发现于肺炎链球菌,目前至少有83种细菌被发现具有发生自然转化的能力,其中革兰氏阳性菌以肺炎链球菌(Streptococcus pneumoniae,S. pneumoniae)为代表,革兰氏阴性菌以奈瑟氏菌(Neisseria)为代表,对其自然转化机制的研究和认识较为清楚,但不同细菌之间自然转化的机制有所差异。自然转化的生物学功能一直以来有以下几种推测:获取营养、修复DNA损伤、生物进化,而近年来对此认识争论不休。本文将详细描述细菌自然转化的分子机制,并对其主要的生物学功能争论焦点进行评述,以期对细菌自然转化有更深入的理解和认识。  相似文献   

10.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

11.
Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the marine environment with the strains examined is favored during times of elevated bacterial and GTA abundance as well as in areas of higher salinity.  相似文献   

12.
Horizontal gene transfer in plants   总被引:1,自引:0,他引:1  
Horizontal gene transfer (HGT) has played a major role in bacterial evolution and is fairly common in certain unicellular eukaryotes. However, the prevalence and importance of HGT in the evolution of multicellular eukaryotes remain unclear. Recent studies indicate that plant mitochondrial genomes are unusually active in HGT relative to all other organellar and nuclear genomes of multicellular eukaryotes. Although little about the mechanisms of plant HGT is known, several studies have implicated parasitic plants as both donors and recipients of mitochondrial genes. Most cases uncovered thus far have involved a single transferred gene per species; however, recent work has uncovered a case of massive HGT in Amborella trichopoda involving acquisition of at least a few dozen and probably hundreds of foreign mitochondrial genes. These foreign genes came from multiple donors, primarily eudicots and mosses. This review will examine the implications of such massive transfer, the potential mechanisms and consequences of plant-to-plant mitochondrial HGT in general, as well as the limited evidence for HGT in plant chloroplast and nuclear genomes.  相似文献   

13.
Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.  相似文献   

14.
Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.  相似文献   

15.
By integrating sequence similarity data of plasmid‐encoded antibiotic resistance determinants with those coming from a less transferred molecular marker, we constructed a network in which all the sequences that most likely underwent horizontal gene transfer (HGT) were linked together. The analysis of this network revealed that either geographical barriers or taxonomical distance can often be overcome since phylogenetically unrelated bacteria, and/or those inhabiting distinct environments, were found to share common antibiotic resistance determinants, probably as a result of (one or multiple) HGT event(s). Data obtained also revealed that bacteria viable through multiple environments (ubiquitous) are likely to give a crucial contribution to the spreading of bacterial resistance towards antimicrobial compounds. These analyses represent a first attempt to give an almost global picture of the horizontal flow of antibiotic resistance determinants at the whole bacterial community level, also underlining the power of HGT among bacteria and how this ‘horizontal flow’ is poorly affected by both taxonomy and physical distance. Finally, data presented may be useful in the infections control procedures, suggesting which bacterial species are more likely acting as vectors of antibiotic resistance determinants.  相似文献   

16.
Prokaryotic organisms share genetic material across species boundaries by means of a process known as horizontal gene transfer (HGT). This process has great significance for understanding prokaryotic genome diversification and unraveling their complexities. Phylogeny-based detection of HGT is one of the most commonly used methods for this task, and is based on the fundamental fact that HGT may cause gene trees to disagree with one another, as well as with the species phylogeny. Using these methods, we can compare gene and species trees, and infer a set of HGT events to reconcile the differences among these trees. In this paper, we address three factors that confound the detection of the true HGT events, including the donors and recipients of horizontally transferred genes. First, we study experimentally the effects of error in the estimated gene trees (statistical error) on the accuracy of inferred HGT events. Our results indicate that statistical error leads to overestimation of the number of HGT events, and that HGT detection methods should be designed with unresolved gene trees in mind. Second, we demonstrate, both theoretically and empirically, that based on topological comparison alone, the number of HGT scenarios that reconcile a pair of species/gene trees may be exponential. This number may be reduced when branch lengths in both trees are estimated correctly. This set of results implies that in the absence of additional biological information, and/or a biological model of how HGT occurs, multiple HGT scenarios must be sought, and efficient strategies for how to enumerate such solutions must be developed. Third, we address the issue of lineage sorting, how it confounds HGT detection, and how to incorporate it with HGT into a single stochastic framework that distinguishes between the two events by extending population genetics theories. This result is very important, particularly when analyzing closely related organisms, where coalescent effects may not be ignored when reconciling gene trees. In addition to these three confounding factors, we consider the problem of enumerating all valid coalescent scenarios that constitute plausible species/gene tree reconciliations, and develop a polynomial-time dynamic programming algorithm for solving it. This result bears great significance on reducing the search space for heuristics that seek reconciliation scenarios. Finally, we show, empirically, that the locality of incongruence between a pair of trees has an impact on the numbers of HGT and coalescent reconciliation scenarios.  相似文献   

17.
We suggest a likelihood-based approach to estimate an overall rate of horizontal gene transfer (HGT) in a simplified setting. To this end, we assume that the number of occurring HGT events within a given time interval follows a Poisson process. To obtain estimates for the rate of HGT, we simulate the distribution of tree topologies for different numbers of HGT events on a clocklike species tree. Using these simulated distributions, we estimate an HGT rate for a collection of gene trees representing a set of taxa. As an illustrative example, we use the "Clusters of Orthologous Groups of proteins" (COGs). We also perform a correction of the estimated rate taking into account the inaccuracies due to gene tree reconstructions. The results suggest a corrected HGT rate of about 0.36 per gene and unit time, in other words 11 HGT events have occurred on average among the 44 taxa of the COG species tree. A software package to estimate an HGT rate is available online (http://www.cibiv.at/software/hgt/).  相似文献   

18.
Points to consider for ethics committees in human gene therapy trials   总被引:3,自引:0,他引:3  
Dettweiler U  Simon P 《Bioethics》2001,15(5-6):491-500
Recent political developments and disclosures of serious adverse events in human gene therapy (HGT) with the death of 18-year old Jesse Gelsinger in the USA have shown that the clinical application of HGT raises some severe ethical issues. These have either been neglected or not yet been discussed to a satisfactory extent. In this paper, we will address this deficiency and develop strategies for a safer application of HGT. Such a study must first look closely at the science of HGT itself. We will evaluate the latest preclinical research, especially data on the viruses that are used as vectors and on modes of administration of vectors. We will put forward new arguments concerning the toxicity assessment of so-called 'gene drugs', the tissue and cell type specificity of the vectors, and the duration and on-set of gene expression. Secondly, we will look at procedural aspects of applied research ethics on the way to clinical application of HGT. There, informed consent (IC) and the patient-researcher relationship are of utmost concern. Furthermore, we will explore the problem of expertise in risk assessment and will show how current regulations foster conflicts of interests that create dilemma situations even for those researchers who act in the best interest of the patients. We will conclude the article with a set of questions for ethicists who have to decide about the quality of HGT protocols. This may contribute to the safety of patients participating in HGT trials and to achieving the aim of efficient application of HGT.  相似文献   

19.
Ice‐associated algae produce ice‐binding proteins (IBPs) to prevent freezing damage. The IBPs of the three chlorophytes that have been examined so far share little similarity across species, making it likely that they were acquired by horizontal gene transfer (HGT). To clarify the importance and source of IBPs in chlorophytes, we sequenced the IBP genes of another Antarctic chlorophyte, Chlamydomonas sp. ICE‐MDV (Chlamy‐ICE). Genomic DNA and total RNA were sequenced and screened for known ice‐associated genes. Chlamy‐ICE has as many as 50 IBP isoforms, indicating that they have an important role in survival. The IBPs are of the DUF3494 type and have similar exon structures. The DUF3494 sequences are much more closely related to prokaryotic sequences than they are to sequences in other chlorophytes, and the chlorophyte IBP and ribosomal 18S phylogenies are dissimilar. The multiple IBP isoforms found in Chlamy‐ICE and other algae may allow the algae to adapt to a greater variety of ice conditions than prokaryotes, which typically have a single IBP gene. The predicted structure of the DUF3494 domain has an ice‐binding face with an orderly array of hydrophilic side chains. The results indicate that Chlamy‐ICE acquired its IBP genes by HGT in a single event. The acquisitions of IBP genes by this and other species of Antarctic algae by HGT appear to be key evolutionary events that allowed algae to extend their ranges into polar environments.  相似文献   

20.
Chung Y  Ané C 《Systematic biology》2011,60(3):261-275
With the increasing interest in recognizing the discordance between gene genealogies, various gene tree/species tree reconciliation methods have been developed. We present here the first attempt to assess and compare two such Bayesian methods, Bayesian estimation of species trees (BEST) and BUCKy (Bayesian untangling of concordance knots), in the presence of several known processes of gene tree discordance. DNA alignments were simulated under the influence of incomplete lineage sorting (ILS) and of horizontal gene transfer (HGT). BEST and BUCKy both account for uncertainty in gene tree estimation but differ substantially in their assumptions of what caused gene tree discordance. BEST estimates a species tree using the coalescent model, assuming that all gene tree discordance is due to ILS. BUCKy does not assume any specific biological process of gene tree discordance through the use of a nonparametric clustering of concordant genes. BUCKy estimates the concordance factor (CF) of a clade, which is defined as the proportion of genes that truly have the clade in their trees. The estimated concordance tree is then built from clades with the highest estimated CFs. Because of their different assumptions, it was expected that BEST would perform better in the presence of ILS and that BUCKy would perform better in the presence of HGT. As expected, the species tree was more accurately reconstructed by BUCKy in the presence of HGT, when the HGT events were unevenly placed across the species tree. BUCKy and BEST performed similarly in most other cases, including in the presence of strong ILS and of HGT events that were evenly placed across the tree. However, BUCKy was shown to underestimate the uncertainty in CF estimation, with short credibility intervals. Despite this, the discordance pattern estimated by BUCKy could be compared with the signature of ILS. The resulting test for the adequacy of the coalescent model proved to have low Type I error. It was powerful when HGT was the major source of discordance and when HGT events were unevenly placed across the species tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号