首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iron and ferritin content of rat liver and the species of ferritin present were examined from 4 days before to 3 weeks after birth. 1. Total iron and ferritin iron accumulated rapidly during the last days of gestation and from the second postnatal day underwent a steady depletion. 2. The amount of iron deposited before birth in the liver of each pup varied inversely with litter size and could be increased moderately by injection of iron into the mother before mating. 3. Intraperitoneal injection of iron 1 day after birth doubled the concentration of total iron, ferritin iron and ferritin protein in the liver over the next 24h, but at 3 weeks after birth it raised the very low concentrations of iron and ferritin severalfold. 4. As shown by electrophoretic migration, ferritin and dissociated ferritin subunits prepared from the livers of rats from 4 days before to 3 weeks after birth differed from those of adult liver ferritin and were indistinguishable from those of adult kidney and spleen ferritin. Treatment with iron at 3 weeks of age induced formation of a ferritin with electrophoretic properties resembling those of adult liver. It is concluded that iron given at this stage of development may activate the genetic cistron for adult liver ferritin.  相似文献   

2.
Ferritin in liver, plasma and bile of the iron-loaded rat   总被引:2,自引:0,他引:2  
Rats were loaded with iron. With overload, up to a 10-fold increase of the iron and ferritin protein content of the livers was measured. The plasma ferritin concentration increased gradually with the ferritin concentration in the liver. The ferritin concentration in the bile increased also and was in the same range as in the plasma. The ratio plasma ferritin concentration to bile ferritin concentration in individual rats decreased in the case of considerable iron overload. After intravenous injection of liver ferritin, less than 2% of the ferritin concentration that disappeared from the blood was found to be in the bile. Isoelectric focussing revealed that the microheterogeneity of liver and bile ferritin were identical, but slightly different from plasma ferritin. These results indicate that ferritin was not solely leaking from the plasma to the bile. Together with ferritin, iron accumulated in the bile. The iron content of the bile ferritin was in the same range as in fully iron-loaded liver ferritin. It is likely that ferritin in the bile is excreted by the liver and consists of normal iron-loaded liver ferritin molecules. In all circumstances, the amount of iron in the bile was much higher than could be accounted for by transport by the bile ferritin. The ferritin protein to iron ratio in the bile was 0.1-1.2, which was in the same range as was measured in isolated lysosomal fractions of the liver. Those results agree with the supposition that ferritin and iron in the bile are excreted by the liver though lysosomal exocytosis.  相似文献   

3.
The effect of long-term dietary cadmium treatment upon the distribution of the metals copper, iron and zinc has been compared in various organs of male and female rats. The renal accumulation of cadmium was similar in both sexes without a plateau being reached. In contrast, the hepatic accumulation of cadmium was higher in the female than in the male rat and a plateau was observed after 30–35 weeks of dietary cadmium treatment. Most of the cadmium which accumulated in these organs was recovered in the metallothionein fraction and the concentration of hepatic cadmiumthionein in the female rat was correspondingly higher than in the male rat. Accumulation of cadmium was associated with an increased zinc concentration in the liver and an increased copper concentration in the kidney; these increases were correlated with increases in liver and kidney metallothioneins induced by cadmium. Uptake of cadmium into organs other than liver and kidney occurred to a small extent but was not associated with changes in the concentration of copper and zinc. Cadmium also accumulated in the intestinal mucosa where it could be recovered in a fraction corresponding to metallothionein. A loss of iron from the liver and kidney was also observed following dietary cadmium treatment and involved mainly a loss of iron from ferritin.  相似文献   

4.
Serum iron, serum ferritin and tissue ferritin during development in ducks   总被引:1,自引:0,他引:1  
Serum ferritin and tissue ferritin from kidney, heart, small intestine, spleen and liver from ducks during development from 16 to 112 days of age were measured by radioimmunoassay using rabbit anti-duck liver ferritin antibodies and goat second antibody. Serum iron concentration and tissue ferritin iron content are given. Serum ferritin concentration, tissue ferritin and ferritin iron content increase gradually during development. The decrease in all these parameters at 8 weeks of age might be due to molting.  相似文献   

5.
L. S. Valberg 《CMAJ》1980,122(11):1240-1248
In healthy persons the plasma ferritin concentration is a sensitive index of the size of body iron stores. It has been successfully applied to large-scale surveys of the iron status of populations. It has also proved useful in the assessment of clinical disorders of iron metabolism. A low plasma ferritin level has a high predictive value for the diagnosis of uncomplicated iron deficiency anemia. It is of less value, however, in anemia associated with infection, chronic inflammatory disorders, liver disease and malignant hematologic diseases, for which a low level indicates iron deficiency and a high level excludes it, but intermediate levels are not diagnostic. Measuring the plasma ferritin concentration is also useful for the detection of excess body iron, particularly in idiopathic hemochromatosis, but again it lacks specificity in the presence of active hepatocellular disease. If iron overload is suspected in these circumstances determination of the iron content of a percutaneous liver biopsy specimen is required. In families with idiopathic hemochromatosis the combined determination of the plasma ferritin concentration and the transferrin saturation is a sufficient screen to identify affected relatives; however, estimation of the hepatic iron concentration is required to establish the diagnosis.  相似文献   

6.
In order to reveal the pathway of iron release from macrophages, a 59Fe-labelled ferric hydroxide-potassium polyvinyl sulfate complex (Fe-PVS) was injected intravenously into anemic rats and the level of radioactivity in the liver, spleen, bone marrow, blood plasma and red blood cells (RBC) was estimated at various time intervals after the injection. Histochemical observation of ferric iron and ferritin in the liver was also made on anemic rats treated using unlabelled Fe-PVS. Fe-PVS injection promoted the recovery of anemia causing a rapid increase in the RBC number, with activated erythropoiesis occurring in the spleen and bone marrow. Soon after the injection, most of the radio iron was found in the liver with a small amount in the circulating erythrocytes, bone marrow and spleen. The iron level in the liver decreased gradually with a rapid increase in the iron level of the erythrocytes which reached a very high level 6 days after the 59Fe-PVS injection. Histochemical observations showed a heavy deposition of ferritin in the Kupffer cells 3 days after Fe-PVS injection. This deposition was minimized after 6 days with an increase in the level of ferritin in the parenchymal cells in the central area of acini. The level of radioferritin estimated biochemically in the nonparenchymal cell fractions of the liver revealed that the level dropped by about one third approximately 3.5 days after the Fe-PVS injection, showing the stimulated ferritin release at this stage. Results indicate that Kupffer cells in the liver play an important role in ferritin synthesis from the phagocytized iron compounds and that the iron is supplied for erythroid cell proliferation.  相似文献   

7.
Iron mobilization in three animal models of inflammation   总被引:2,自引:0,他引:2  
The effect of acute, subchronic, and chronic experimental models of inflammation upon hematocrit, hemoglobin, serum iron and ferritin iron and nonheme iron concentration in the liver and spleen has been studied in the rat. In the acute model (carrageenan oedema) no iron mobilization took place, whereas in the chronic models differences in iron mobilization were observed, related to their different chronicity and to the time elapsed from induction. The carrageenan-induced granuloma (from 12 h to 8 days) (subchronic model) was accompanied by a decrease of plasma iron (12 and 24 h), a later decrease of the hematocrit values (2 and 4 days) and high ferritin and nonheme iron concentrations in the liver and spleen for 4 days, followed by a tendency to return to the control values. The anemia in the adjuvant arthritis (from 1 to 4 weeks after induction) (chronic model) was observed at 7 days and is related to increased iron stores in the liver and spleen. However, the iron store levels in liver decreased and fell later below control values. The increase of ferritin and nonheme iron concentrations may be responsible for the reduced availability of iron release from tissue.  相似文献   

8.
A control group of 1-day-old chicks, fed on commercial food, were compared with different experimental lots that had all received a supplement of 100 ppm Cd. The hematocrit, hemoglobin and ceruloplasmin concentrations, and metal contents (Fe, Cu, Zn, Cd) in plasma and in the liver were determined after either 4 or 9 weeks of treatment. The intestinal iron absorption and their ferrokinetics were also studied in 10-week-old Cd-fed chicks. The anemia-producing effect of cadmium was already evident after the second week of treatment. The iron supplement (oral or injected) corrected the anemia, but did not correct the depression of growth effect. Plasma iron was not affected, but the liver stores were reduced by 50%. Neither the plasma copper and ceruloplasmin, nor the copper content in liver, were affected. Zinc in the liver increased significantly (P<0.05). No statistical differences in plasma iron turnover were observed between the control and Cd-fed chicks, but the red blood cell utilization was higher (P<0.01) in Cd-fed groups. The intestinal iron absorption was clearly reduced (P<0.001) where cadmium was presented in the perfusion fluid “in vivo” experiments. This suggested that cadmium reduced the iron liver stores through its effect on intestinal iron absorption. However, it also seems that it did not interfere in iron mobilization, since the plasma iron was unaffected and the Cd-fed chicks presented increased plasma iron after estrogen administration. The indirect effect of cadmium on copper metabolism is uncertain.  相似文献   

9.
Diquat toxicity causes iron-mediated oxidative stress; however, it remains unclear how diquat affects iron metabolism. Here, we examined the effect of diquat-induced oxidative stress on iron metabolism in male Fischer-344 rats, with particular focus on gene expression. Hepatic nonheme iron content was unchanged until 20?h after diquat treatment. Hepatic free iron levels increased markedly in the early stages following treatment and remained elevated for at least 6?h, resulting in severe hepatotoxicity, until returning to control levels at 20?h. The level of hepatic ferritin, especially the H-subunit, increased 20?h after diquat treatment due to elevated hepatic ferritin-H mRNA expression. These results indicate that early elevated levels of free iron in the liver of diquat-treated rats cause hepatotoxicity, and that this free iron is subsequently sequestered by ferritin synthesized under conditions of oxidative stress, thus limiting the pro-oxidant challenge of iron. The plasma iron concentration decreased at 6 and 20?h after diquat treatment, whereas the level of plasma interleukin-6 increased markedly at 3?h and remained high until 20?h. In the liver of diquat-treated rats, expression of hepcidin mRNA was markedly upregulated at 3 and 6?h, whereas ferroportin mRNA expression was downregulated slightly at 20?h. Transferrin receptor 1 mRNA expression was significantly upregulated at 3, 6, and 20?h. These results indicate that inhibition of iron release from iron-storage tissues, through stimulation of the interleukin-6-hepcidin-ferroportin axis, and enhanced iron uptake into hepatocytes, mediated by transferrin receptor 1, cause hypoferremia.  相似文献   

10.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

11.
In the rat liver the deposition of iron was measured after hypertransfusion with rat erythrocytes. The liver iron fractions were studied during four weeks after the hypertransfusions. In the first week the haemosiderin iron fraction increased together with the ferritin iron fraction. Most iron was deposited as ferritin iron. In the last week of the experiments, while the ferritin iron fraction still increased, the haemosiderin iron fraction decreased. At the same time plasma iron was utilized when erythropoiesis, which had been suppressed by the hypertransfusion, recommenced. It is suggest that, under these experimental conditions, liver haemosiderin iron is used in haemoglobin synthesis.  相似文献   

12.
Effects of obesity and age on copper, iron, zinc, sodium, potassium, and protein were compared in liver, kidney, brain, and muscle of obese (fa/fa) and nonobese (non-fa/fa) male Zucker rats. Blood plasma cerulopasmin, copper, zinc, sodium, and potassium were also determined. Mean brain weight of fa/fa rats was less than that of non-fa/fa rats at 12 weeks of age; mean brain protein concentration was greater in fa/fa than in non-fa/fa at 5 and 12 weeks of age. At 18-19 days of age, mean sodium concentration (mg/g protein) in liver of fa/fa was less than that of non-fa/fa. At 5 weeks of age, mean copper concentration (microgram/g protein) in kidney was greater in fa/fa. Mean total copper, iron, zinc, sodium, and potassium in liver and kidney were greater in fa/fa than in non-fa/fa at 5 weeks because of the larger livers and kidneys of fa/fa. Mean concentrations of copper, zinc, sodium, and potassium per gram of brain protein were slightly (6-10%) less in fa/fa than in non-fa/fa at 5 weeks. By 12 weeks, mean concentrations of copper in liver, kidney, (tibialis) muscle, and blood plasma, ceruloplasmin in blood plasma, zinc in liver and muscle, iron in muscle, and sodium in liver were greater in fa/fa than in non-fa/fa. However, total amount of each mineral in muscle at 12 weeks was less in fa/fa than in non-fa/fa because of the smaller mean muscle weight of fa/fa. Mean concentrations of copper and zinc in brain and of iron in liver and brain were less in fa/fa than in non-fa/fa at 12 weeks. The major age-related changes in fa/fa that were not observed in non-fa/fa were large increases in liver and kidney copper between 5 and 12 weeks of age. It seems that the abnormal mineral metabolism is a consequence of the obesity, but the mechanisms are not identified.  相似文献   

13.
The metabolism of iron and copper in male Nagase analbuminaemic (NA) and Sprague Dawley (SD) rats was compared. Relative liver weight was higher and spleen weight significantly lower in NA than SD rats. In NA rats, red blood cell count, haemoglobin and haematocrit were lower, whereas plasma transferrin, total iron-binding capacity and mean corpuscular haemoglobin were higher when compared with SD rats. Iron concentrations in plasma, liver, kidneys and heart were higher, and those in the spleen and tibia were lower, in NA rats. The iron concentrations in liver and spleen were positively correlated with the amount of brown pigment as observed histopathologically. Bile flow as well as biliary iron and copper excretion were higher in NA than SD rats. Copper concentrations in liver, kidneys and plasma were higher in NA rats. Plasma levels of ceruloplasmin were about two-fold higher in NA rats. The feeding of a high-iron diet reduced kidney copper concentrations in both strains of rats, which was associated with a decrease in the absorption and biliary excretion of copper.  相似文献   

14.
Mineral (phosphorus, sulfur, potassium, calcium, magnesium, iron, zinc, copper, and manganese) concentrations were measured in plasma, and several tissues from female Wistar rats (young: 3-wk-old; mature: 6-mo-old) were fed on a dietary regimen designed to study the combined or singular effects of age and dietary protein on mineral status. Three diets, respectively, contained 5, 15, and 20% of bovine milk casein. Nephrocalcinosis chemically diagnosed by increased calcium and phosphorus in kidney was prevented in rats fed a 5% protein diet. Renal calcium and phosphorus were more accumulated in young rats than mature rats. A 5% protein diet decreased hemoglobin and blood iron. The hepatic and splenic iron was increased by a 5% protein diet in mature rats but was not altered in young rats. Mature rats had higher iron in brain, lung, heart, liver, spleen, kidney, muscle, and tibia than young rats. A 5% protein diet decreased zinc in plasma and liver. Zinc in tibia was increased with dietary protein level in young rats but was not changed in mature rats. A 5% protein diet decreased copper concentration in plasma of young rats but not in mature rats. Mature rats had higher copper in plasma, blood, brain, lung, heart, liver, spleen, and kidney than young rats. With age, manganese concentration was increased in brain but decreased in lung, heart, liver, kidney, and muscle. These results suggest that the response to dietary protein regarding mineral status varies with age.  相似文献   

15.
1. Changes in plasma and tissue ferritin concentrations were surveyed in mice fed on iron deficient diets (Fe, 2.4 micrograms/g) from the age of 8 to 30 weeks by an enzyme-immunoassay for mouse ferritin. Values were compared with those in mice on control diets (Fe, 110 micrograms/g) and mice with blood loss. 2. In mice on iron deficient diets, while plasma ferritin remained at normal level, ferritin in the spleen and kidney decreased, but that in the liver increased as much as twice of that in the control. 3. Mice with blood loss revealed a drastic reduction of ferritin in every tissue and plasma examined.  相似文献   

16.
Horse ferritins from different organs show heterogeneity on electrofocusing in Ampholine gradients. Both ferritin and apoferritin from liver and spleen could be fractionated with respect to surface charge by serial precipitation with (NH4)2SO4. In the ferritin fractions, increasing iron content parallels increasing isoelectric point. After removal of their iron, those fractions which originally contained most iron accumulated added iron at the fastest rates. When unfractionated ferritins from different organs were compared the average isoelectric point increased in order spleen less than liver less than kidney less than heart. The order of initial rates of iron uptake by the apoferritins was spleen greater than kidney greater than heart and initial average iron contents also followed this order. The relatively low rates of iron accumulation by iron-poor molecules may have been due to structural alteration, to degradation, to activation of the iron-rich molecules or to other factors.  相似文献   

17.
The copper-binding protein ceruloplasmin oxidizes ferrous iron to ferric iron, an action that is critical for the binding of iron to transferrin in plasma. Ceruloplasmin, in common with ferritin and transferrin, is an acute-phase protein that is altered by inflammation. We sought to identify interrelationships between the copper and iron systems by measuring copper, ceruloplasmin, ferroxidase, ferritin, transferrin, iron, and iron-binding capacity in a group of hemodialysis patients. We looked for evidence of inflammation and free-radical injury by assaying for protein carbonyl groups, protein pyrrolation, di-tyrosine, and advanced oxidation protein products. Our findings were compatible with an active inflammatory state that affected both iron and copper metabolism. Transferrin levels were low, whereas ceruloplasmin levels were elevated compared to normal. Copper concentration was increased proportional to ceruloplasmin. Several variables including ceruloplasmin and transferrin were observed to correlate significantly with the level of pyrrolated protein. The data suggest that posttranslational modification of circulating proteins may affect their structural, enzymatic, and ligand-binding properties. Abnormalities in copper metabolism and their influence on iron handling in renal failure are complex and will require additional study before their importance can be defined.  相似文献   

18.
Rats fed a carbonyl iron-supplemented diet for 4-15 months were studied for iron content and morphologic changes in the liver, spleen, intestinal mucosa, pancreas and heart. All organs had an increased iron content measured by atomic absorption, with the highest concentrations in the liver and spleen. The periportal distribution of stored iron in the liver was similar to that in human hemochromatosis. In animals treated beyond 6 months Kupffer cells and sinusoidal lining cells also showed cytosiderosis. Electron microscopy provided information on ferritin and hemosiderin content and distribution within parenchymal and sinusoidal cells of the liver but no excessive fibrosis was found. Except for the spleen, the other organs showed less iron deposition. Iron-filled lysosomes (siderosomes) were found in macrophages in the intestinal lamina propria and pancreas, as well as in enterocytes, pancreatic acinar cells and heart muscle cells. Heavily iron-laden siderosomes had increased membrane instability which was demonstrated both morphologically and by measurements of latent lysosomal enzyme activities. Even though cirrhosis was not found, the distribution pattern of accumulated storage iron and lysosomal lability indicated that the carbonyl iron-fed rat is a suitable experimental model for human hemochromatosis.  相似文献   

19.
Scudiero R  Trinchella F  Riggio M  Parisi E 《Gene》2007,397(1-2):1-11
Antarctic notothenioids are characterized by a drastic reduction of the hemoglobin content, a condition that reaches its extreme in icefish that, following a gene deletion event, are completely devoid of hemoglobin. To answer the question on what type of adaptive changes occurred in icefish to prevent accumulation of potentially dangerous ferrous iron, we investigated the genes of four proteins known to play a key role in iron metabolism. For this purpose, we cloned and sequenced the cDNAs encoding ceruloplasmin, transferrin, ferritin and divalent metal transporter 1. While the inferred amino acid sequences of transferrin from different Antarctic fish species showed a high level of similarity with the homologous proteins from other species, ceruloplasmin sequence featured amino acid substitutions affecting a copper binding site. Another peculiarity was the presence in subunit H of the icefish ferritin of the two sets of sites involved in iron oxidation and iron mineralization, which in mammals are located on two distinct ferritin subunits. Significant differences in the expression levels of the four genes were found between hemoglobinless and red-blooded notothenioids. An increased expression of ceruloplasmin mRNA in icefish was interpreted as a compensatory mechanism to prevent accumulation of ferrous iron in hemoglobinless fish. In icefish, the amounts of ferritin H-chain mRNA measured in liver, blood and head kidney were lower than in the same organs of the red-blooded fish. In the spleen of both fishes, the expression levels of ferritin H-chain were significantly lower than in the spleen of a "pink-blooded" notothenioid with an intermediate hemoglobin content. Finally, the amount of divalent metal transporter mRNA measured in the head-kidney was lower in the icefish than in the same organ of its red-blooded counterpart. These results indicate that the loss of hemoglobin in icefish is accompanied by remodulation of the iron metabolism.  相似文献   

20.
To establish the time-sequence relationship between ferritin accumulation and uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological and morphometrical study was performed. Uroporphyria was induced by the intraperitoneal administration of hexachlorobenzene plus iron dextran and of iron dextran alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with hexachlorobenzene plus iron dextran at 2 weeks and in mice treated with iron dextran alone at 9 weeks. In the course of time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were initially formed in hepatocytes in the periportal areas of the liver, in which also ferric iron staining was first detected. The amount and the distribution of the main storage form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. Ferritin accumulation preceded the formation of uroporphyrin crystals in hepatocytes in both treatment groups. Moreover, uroporphyrin crystals were nearly always found close to ferritin iron. We conclude that uroporphyrin crystals are only formed in hepatocytes in which also iron (ferritin) accumulates. Hexachlorobenzene accelerates the effects of iron in porphyrin metabolism, but does not influence the accumulation of iron into the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号