首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boundaries of vestibular projections in the temporal cortex during stimulation of the vestibular nerve were studied in cats anesthetized with pentobarbital and chloralose or chloralose alone. The caudal boundary of the vestibular zone was shown to run along the anterior ectosylvian gyrus. A focus of evoked activity was found in the suprasylvian sulcus or 1–2 mm rostrally to it. All short-latency evoked potentials recorded during vestibular nerve stimulation in the temporal region caudally to the zone mentioned above were connected with the spread of current to auditory structures. To verify the extent of spread of the stimulating current, focal potentials were recorded in the vestibular and superior olivary groups of nuclei. Special experiments were carried out to study the topography of these potentials at the level of bulbar structures during stimulation of vestibular and auditory nerves. According to the results, there is no second vestibular area in the temporal cortex in cats. Vestibular afferentation is projected mainly into the contralateral hemisphere, and the response latency is 5.2±0.7 msec. The ipsilateral evoked potentials had a long latent period (8.4±1.3 msec), and their amplitude depended on the type of anesthesia; it was accordingly postulated that additional synaptic relays exist in this vestibulocortical pathway.  相似文献   

2.
Sympathetic preganglionic projections of the chick are segmentally specific. Neurons from the 16th cervical (C16) and the first thoracic (T1) spinal cord segments project almost exclusively in the rostral direction, while those from the fifth thoracic (T5) to the first lumbar (L1) spinal segments project almost exclusively in the caudal direction. Neurons from the intervening spinal cord segments (T2–4) project in rostral and caudal directions. There is also a tendency for rostrally located neurons in each segment to project rostrally and caudally located neurons to project caudally. To investigate whether specific projections of preganglionic neurons are intrinsically determined by segmental origins of their cell bodies, neural tube segments were transplanted or rotated in embryos at stages 19–26; these stages include times during and after preganglionic cell birth and just prior to axon outgrowth. When the T1 neural tube segment was replaced with the T5 or T7 neural tube segment, the transplanted T5 or T7 preganglionic neurons, now in the T1 position, projected rostrally. Conversely, when the T5 or T7 neural tube segment was replaced with the T1 neural tube, the transplanted T1 preganglionic neurons projected caudally. In addition, when individual T3 spinal cord segments were rotated 180° along the A-P axis, neurons which were originally in the caudal part of the segment projected rostrally, whereas neurons originally from the rostral part of the segment projected caudally. These results show that specific projections of preganglionic neurons are not intrinsically determined by segmental origins of their cell bodies. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 371–378, 1998  相似文献   

3.
Rhamphichthys rostratus (L.) emits brief pulses (2 ms) repeated very regularly at 50 Hz. The electric organ shows a heterogeneous distribution of the electrocyte tubes and the occurrence of three electrocyte types (caudally innervated, rostrally innervated and marginallycaudally innervated). In the sub-opercular region the electric organ consists of a pair of tubes containing only caudally innervated electrocytes. At the abdominal region the EO consists of three pairs of tubes. Each pair contains one of the described electrocyte types. The number of electrocyte tubes increases toward the tail to reach nine or ten pairs in the most caudal segments. In the intermediate region most tubes contain doubly innervated electrocytes except the ventral pair that contains caudally innervated electrocytes. The caudal 25% contains exclusively caudally innervated electrocytes. The electric organ discharge consists of five wave components (V1 to V5). Electrophysiological data are consistent with the hypothesis that V1 results from the activity of the rostral faces of rostrally innervated electrocytes. V2 results from the activities of rostral faces of marginally-caudally innervated electrocytes while V3 results from the activities of caudal faces of most electrocytes. Curarization experiments demonstrated that V4 and V5 result from action potential invasion and are not directly elicited by neural activity.Abbreviations AEN1 anterior electromotor nerve 1 - AEN2 anterior electromotor nerve 2 - BMB boraxic methylene blue - CIE caudally innervated electrocytes - EMF electromotive force - EO electric organ - EOD electric organ discharge - I current amplitude - MCIE marginally-caudally innervated electrocytes - MT medial tubes - PEN posterior electromotor nerve - R n internal impedance - RIE rostrally innervated electrocytes - Rl load resistor - SAT short abdominal tubes - V voltage amplitude  相似文献   

4.
Retrograde and transganglionic transport of horseradish peroxidase (HRP) was used to investigate the neurons innervating the upper and the lower lips and their central projections in the rat. Both the upper and the lower lips were observed to be innervated by a very large number of trigeminal sensory neurons, with their cell bodies located in the maxillary and the mandibular parts of the trigeminal ganglion, respectively. The central projections of neurons innervating the upper lip formed a long continuous column starting rostrally at midlevels of the trigeminal main sensory nucleus (5P) and extending caudally through the CI dorsal horn, with occasional fibers reaching the C3 segment. The heaviest projections appeared in the middle portions of 5P and nucleus interpolaris (51), as well as in the rostral part of nucleus caudalis (5C). A small but consistent projection to the solitary tract nucleus, originating from cells in the inferior vagal ganglion, was observed in the upper-lip experiments. The central projections from neurons innervating the lower lip also appeared as a long column located dorsally or dorsomedially to the projections from the upper lip. The most prominent projections from the lower lip were located in the caudal part of 5P, the middle part of 5I, and the caudal two-thirds of 5C. Sparse projections could be traced as far caudally as C4. At 5C and cervical levels, some labeling appeared contralaterally in the same location as on the ipsilateral side.  相似文献   

5.
6.
The projection from the sacro-coccygeal region of the spinal cord to the cerebellum was studied by two different techniques in the cat. In five cats wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) was injected caudal to a preceding unilateral cordotomy at the sacral level, aimed at interrupting the spinocerebellar tracts on one side completely, and the distribution of WGA-HRP labeled mossy fibers and mossy fiber terminals was studied in the cerebellum. In three additional cats, degenerating fibers were examined in Fink-Heimer stained sections following unilateral transection of the lateral and ventral funiculi at L7 or S3 level. In the WGA-HRP experiments the labeled mossy fiber terminals were located bilaterally in lobules I-V. Most of them were found in the anterior part of lobule II. In addition, labeled terminals were observed in sublobule VIIIB and in pars copularis of the paramedian lobule, contralateral to the cordotomy. The terminals in the anterior lobe were concentrated in longitudinal zones parallel to the mid sagittal plane. In lobule II, the terminals were most abundant in the superficial, apical parts of the folia. Some presumed terminals were also seen in the cerebellar nuclei. Labeled fibers were found contralateral, but not ipsilateral to the cordotomy in the superior and inferior cerebellar peduncles, as well as in the spinal cord rostral to the cordotomy. The results of the degeneration experiments were the same as those of the WGA-HRP experiments with regard to the detailed projections in the cerebellar cortex. This is strong support against the possibility that WGA-HRP labeled cerebellar mossy fiber terminals, following WGA-HRP injections in the spinal cord, would represent terminals of collaterals of retrogradely labeled neurons. It also lends strong support in favour of WGA-HRP as a reliable anterograde tracer for studying cerebellar cortical projections of spinocerebellar neurons in the cat.  相似文献   

7.
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.  相似文献   

8.
The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.  相似文献   

9.
Projections from the trigeminal complex to paramedian lobule (PML) were studied in the tree shrew (Tupaia glis) by means of retrograde transport of horseradish peroxidase (HRP). Neurons which project to both dorsal and ventral folia of PML are located primarily in those areas of the trigeminal nuclear complex interpreted as nucleus interpolaris (Vi) and caudal areas of the nucleus oralis (Vo). The majority of HRP-labeled neurons lie in ventral and ventrolateral regions of Vi/Vo. No HRP-reactive cells are present in the principal (Vp), mesencephalic, or motor nuclei nor in nucleus caudalis or rostral portions of oralis. The majority of trigeminocerebellar (TC) cells are found in ipsilateral Vi; however, sparse numbers of labeled somata are present in this subnucleus on the contralateral side. Within Vi/Vo, small fusiform and medium-and large-sized multipolar neurons contain HRP-reaction product. Large multipolar cells are found primarily in ventrolateral portions of Vi/Vo, while medium and small neurons are scattered throughout the ventral half of the nucleus. Small-sized neurons are also present dorsally within Vi/Vo. Axons of labeled TC cells course laterally through the spinal trigeminal tract, enter medial aspects of the restiform body, and arch dorsally into the cerebellum.  相似文献   

10.
The effect of Pulvinar-Lateral Posterior (P-LP) electrical stimulation on superior colliculus unitary responses and eye movements is analyzed in 17 encéphale isolé cats. Twelve of them were curarized. Out of a total of 190 recorded units, 117 were localized in the superior colliculus and 73 units in the Mesencephalic Reticular Formation (MRF) below the superior colliculus. Thirty eight per cent (n = 45) of the collicular units modified their discharge frequency when the ipsilateral P-LP was electrically stimulated. The current intensity thresholds of transynaptic activation had a range between 0.5 and 2.0 mA. Most of the orthodromic responses were produced by ipsilateral P-LP stimulation and were localized in the intermediate and deep layers of the superior colliculus. Three types of responses were obtained: short latency responses between 2 and 10 ms (57%); intermediate latency responses between 15 and 40 ms (29%), and long latency responses between 50 and 200 ms (14%). Thirty one per cent (n = 18) of the units recorded in the MRF responded to P-LP stimulation with 10 ms pulse-trains duration. In the MRF 3 types of responses were observed: 1) a decrease or blockade in the resting discharge during 20 to 100 ms after stimulation (20%); simple responses with a latency between 25 and 150 ms (40%), and complex responses with an early response and a latency between 15-40 ms, and a late response with a latency between 150 and 200 ms (40%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Three points located approximately 8 mm apart were identified in a dorsolateral funiculus of the lower thoracic spinal cord in mesencephalic cats, each producing stepping movements on the ipsilateral hindlimb when stimulated. An area 5–17 mm caudal to the caudal stepping point (SP) was scanned for neurons responding synaptically to stimulating the rostral or caudal SP prior and subsequent to electrolytic coagulation of the medial SP. Relative incidence of neurons excited by stimulating the caudal SP did not change following this type of lesioning, although stimulation of the rostral SP at the rate of 4 Hz induced response 5 times less frequently than before. Even stimulation of the rostral SP at the rate of 40–60 Hz, which had considerably increased firing index prior to coagulation, could only produce excitation in tiny numbers of neurons. This indicates that synaptic excitation of neurons becomes considerably more difficult once the stepping strip between stimulation and recording sites has been damaged.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 763–769, November–December, 1988.  相似文献   

12.
大鼠前庭内侧核在前庭—交感反应中的作用   总被引:1,自引:1,他引:0  
潘培森  张义声 《生理学报》1991,43(2):184-188
实验在氯醛糖和尿酯混合麻醉的大鼠上进行。在内脏大神经上记录刺激同侧前庭神经进入脑干处的交感反应。电刺激前庭神经可在同侧内脏大神经引出—明确的叠加反应,其平均潜伏期为45.8±6.98ms,时程为55.21±5.35ms。增加刺激强度,反应幅度也增加,但潜伏期不变。用前庭内侧核(NVM)的片层场电位作为指标并选择其相位倒转处作刺激点,可在同侧内脏大神经记录到潜伏期为32ms 的叠加反应,而同一动物刺激前庭神经入脑处时内脏大神经反应的潜伏期为43ms。在 NVM 头端损毁后,此前庭-交感反应明显减小,再损毁尾端 NVM 后,此反应消失。损毁 Deiters 核对前庭-交感反应无影响。这些结果表明 NVM在内脏大神经记录到的前庭-交感反应中是一重要的中继站。  相似文献   

13.
R J Traub  M J Iadarola  M A Ruda 《Peptides》1989,10(5):979-983
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured by radioimmunoassay in the cat lumbosacral dorsal spinal cord following unilateral dorsal rhizotomy of 5 consecutive dorsal roots. The dorsal rhizotomies greatly reduced but did not eliminate the CGRP-LI from the ipsilateral rhizotomized segments. The amount of CGRP-LI remaining in the rhizotomized segments was greatest in the most caudal segment (846 +/- 311 pmoles/g tissue) and decreased below 300 pmoles/g tissue in the remaining segments. When these values were compared to the intact contralateral side, the percent CGRP remaining ranged from 65% in the sacral segments to less than 20% in the lumbar segments. Rostral to the rhizotomized segments there was a gradual return of CGRP-LI to control levels within 3 segments. Small diameter primary afferent fibers are the only known source of CGRP within the dorsal spinal cord. These results suggest that the most likely origin of the CGRP that remained in the rhizotomized lumbar segments was the rostrally and caudally projecting branches of ipsilateral primary afferents that entered the spinal cord through intact dorsal roots caudal and rostral to the transected roots. These results support the hypothesis that small diameter primary afferents project several segments in the cat spinal cord.  相似文献   

14.
Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal  相似文献   

15.
The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally around the motor trigeminal nucleus, giving off few terminals in these nuclei and terminate in the parabrachial nucleus. Moderate projections to the peritrigeminal zone, including the intertrigeminal nucleus and the dorsal subcoeruleus nucleus, were observed. Caudally to the injection site, dense innervations from the rostral nucleus of the solitary tract were detected in the parvocellular reticular formation ventral and caudal to the injection site and in the intermediate and ventral medullary reticular formation. The rostral central and ventral subdivisions of the NTS up to the level where the nucleus of the solitary tract abuts the fourth ventricle and the hypoglossal nucleus, receive moderate input from the rostral nucleus of the solitary tract. In general, the projections from the rostral nucleus of the solitary tract were bilateral with an ipsilateral predominance. The caudal part of the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the facial nucleus were not labeled. It is concluded that medullary rNTS projections participate in oral motor behavior and autonomic control of abdominal organs.  相似文献   

16.
We have exploited the segregation of motor and sensory axons into peripheral nerve sub-compartments to examine spinal reflex interactions in anaesthetized stingrays. Single, supra-maximal electrical stimuli delivered to segmental sensory nerves elicited compound action potentials in the motor nerves of the stimulated segment and in rostral and caudal segmental motor nerves. Compound action potentials elicited in segmental motor nerves by single stimuli delivered to sensory nerves were increased severalfold by prior stimulation of adjacent sensory nerves. This facilitation of the segmental reflex produced by intense conditioning stimuli decreased as it was applied to more remote segments, to approximately the same degree in up to seven segments in the rostral and caudal direction. In contrast, an asymmetric response was revealed when test and conditioning stimuli were delivered to different nerves, neither of which was of the same segment as the recorded motor nerve: in this configuration, conditioning volleys generally inhibited the responses of motoneurons to stimuli delivered to more caudally located sensory nerves. This suggests that circuitry subserving trans-segmental interactions between spinal afferents is present in stingrays and that interneuronal connections attenuate the influence that subsequent activity in caudal primary afferents can have on the motor elements.  相似文献   

17.
Single unit responses elicited through noxious mechanical stimulation of orofacial receptive fields were recorded, with glass micro-electrodes, within the rat ventrobasal complex of the thalamus. The evoked activities were compared before and after de-afferentation of the caudal sub-nucleus by trigeminal tractotomy at the level of the obex. Only units responding to noxious stimulation of oral receptive fields were unaffected by tractotomy. These results provide evidence that the rostral part of the spinal nucleus is involved in trigeminal painful sensation.  相似文献   

18.
We have examined the expression of three paralogous Hox genes from E11.5 through E15.5 in the mouse spinal cord. These ages coincide with major phases of spinal cord neurogenesis, neuronal differentiation, cell migration, gliogenesis, and motor neuron cell death. The three genes, Hoxa10, Hoxc10, and Hoxd10, are all expressed in the lumbar spinal cord and have distinct expression patterns. Mutations in these three genes are known to affect motor neuron patterning. All three genes show lower levels of expression at the rostral limits of their domains, with selective regions of higher expression more caudally. Hoxa10 and Hoxd10 expression appears confined to postmitotic cell populations in the intermediate and ventral gray, while Hoxc10 is also expressed in proliferating cells in the dorsal ventricular zone. Hoxc10 and Hoxd10 expression is clearly excluded from the lateral motor columns at rostral lumbar levels but is present in this region more caudally. Double labeling demonstrates that Hoxc10 expression is correlated with ventrolateral LIM gene expression in the caudal part of the lumbar spinal cord.  相似文献   

19.
Anterograde and retrograde transport of horseradish peroxidase was used to examine the afferent and efferent projections of the glossopharyngeal and vagal nerves in the lamprey, Lampetra japonica. Except for the ganglion cells and motoneurons, the distribution patterns of HRP-positive elements differed little between the two nerves. Afferent fibers mainly terminated in the ipsilateral cerebellar area, medial octavolateralis nucleus, and between the ventral octavolateralis nucleus and descending tract and nucleus of the trigeminal nerve (dV). In the cerebellar area, most of the labeled fibers were located in the molecular zone, but some penetrated into the granular zone. In the rostral part of the medial octavolateralis nucleus, labeled fibers coursed from the middle to the lateral area, and in the caudal part, they were localized in the dorsal area of the nucleus. In the area between the dV and ventral octavolateralis nucleus, labeled fibers coursed near the dorsal margin of the rostral part of the dV, and in the caudal part, they shifted dorsally. Ganglion cells and motoneurons of each nerve were also labeled.  相似文献   

20.
The facilitatory effects evoked on the motor periphery by the activation of neuronal pools in cerebellar nuclei were analized in 13 cats. The aim of the work was to compare the frequency and the characteristics of the motor facilitations induced on the ipsilateral forelimb by the microstimulation of cerebellar foci in the fastigial (CBM or in the interposital (NIA) nucleus. CBM or NIA sites, previously identified for the motor effects, were microstimulated, together with the contralateral motor cortex, to give evidence of the facilitations. It was observed that 51% of the NIA motor sites, 46% of the rostral and 33% of the caudal CBM ones, were able, when activated, to evoke facilitatory effects on at least one muscle. The most frequent motor pattern observed following NIA microstimulation was the contraction of a proximal muscle and simultaneously the facilitation of a distal one. Similar responses were detected upon activation of neuronal pools in both zones of CBM. A good number of CBM foci (39% in the rostral division and 33% in the caudal one), however, was unable to induce facilitation, eliciting, upon stimulation, only massive axial movements. Distal muscles were involved by facilitatory effects in a higher number of cases following NIA stimulation (61% of all the facilitatory responses) than CBM rostral (39%) or caudal (43%) one. Furthermore, a particular characteristic of a good percentage of CBM facilitating foci (36% in rostral and 28% in caudal CBM) was the capability to elicit motor activity in the contralateral side and simultaneously facilitation in the ipsilateral one.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号