首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sun L  Liu Y  Kong X  Zhang D  Pan J  Zhou Y  Wang L  Li D  Yang X 《Plant cell reports》2012,31(8):1473-1484
Various organisms produce HSPs in response to high temperature and other stresses. The function of heat shock proteins, including small heat shock protein (sHSP), in stress tolerance is not fully explored. To improve our understanding of sHSPs, we isolated ZmHSP16.9 from maize. Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. ZmHSP16.9 expressed in root, leaf and stem tissues under 40 °C treatment, and was up-regulated by heat stress and exogenous H?O?. Overexpression of ZmHSP16.9 in transgenic tobacco conferred tolerance to heat and oxidative stresses by increased seed germination rate, root length, and antioxidant enzyme activities compared with WT plants. These results support the positive role of ZmHSP16.9 in response to heat stress in plant. KEY MESSAGE: The overexpression of ZmHSP16.9 enhanced tolerance to heat and oxidative stress in transgenic tobacco.  相似文献   

3.
小菜蛾热休克蛋白基因的鉴定及其表达模式分析   总被引:3,自引:0,他引:3  
热休克蛋白(heat shock protein, HSP)在昆虫应对外界胁迫刺激时起着重要作用。为了系统研究小菜蛾Plutella xylostella HSP基因家族, 根据家蚕的HSP蛋白序列, 采用本地Blast程序对小菜蛾全基因组数据库进行同源序列检索, 从小菜蛾基因组数据库中鉴定了25个HSP基因, 包括2个HSP90、 8个HSP70和15个sHSP(small heat shock protein, sHSP)基因。小菜蛾、 家蚕Bombyx mori、 黑腹果蝇Drosophila melanogaster和赤拟谷盗Tribolium castaneum的HSP系统进化分析显示, 昆虫的小分子量热休克蛋白sHSP具有很强的种属特异性, HSP70家族的保守性比sHSP强。小菜蛾HSP基因表达模式分析显示, 与敏感品系对比, 抗性品系(抗毒死蜱和抗氟虫氰品系)中HSP基因具有不同的表达模式。小菜蛾1, 2和3龄幼虫HSP基因表达模式较为接近, 而与4龄幼虫中的表达模式相差较大; 4龄幼虫和蛹中的表达模式相近; 雌成虫和雄成虫中的表达模式显著不同, 与果蝇精子形成有关的两个热休克蛋白HSP23和HSP27基因[分别为CCG003980.1 (Px23.5)和CCG005412.2 (Px27.5)], 在小菜蛾雄成虫中的表达量显著高于雌成虫。研究结果表明小菜蛾HSP基因不仅在杀虫剂抗性、 发育分化, 甚至在生殖上均可能起着重要的作用。本研究为深入研究小菜蛾HSP与生长发育、 抗逆行为的相互关系奠定了基础。  相似文献   

4.
5.
Zhou Y  Chen H  Chu P  Li Y  Tan B  Ding Y  Tsang EW  Jiang L  Wu K  Huang S 《Plant cell reports》2012,31(2):379-389
In plants, small heat shock proteins (sHSPs) are unusually abundant and diverse proteins involved in various abiotic stresses, but their functions in seed vigor remain to be fully explored. In this study, we report the isolation and functional characterization of a sHSP gene, NnHSP17.5, from sacred lotus (Nelumbo nucifera Gaertn.) in seed germination vigor and seedling thermotolerance. Sequence alignment and phylogenetic analysis indicate that NnHSP17.5 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of the NnHSP17.5-YFP fusion protein. NnHSP17.5 was specifically expressed in seeds under normal conditions, and was strongly up-regulated in germinating seeds upon heat and oxidative stresses. Transgenic Arabidopsis seeds ectopically expressing NnHSP17.5 displayed enhanced seed germination vigor and exhibited increased superoxide dismutase activity after accelerated aging treatment. In addition, improved basal thermotolerance was also observed in the transgenic seedlings. Taken together, this work highlights the importance of a plant cytosolic class II sHSP both in seed germination vigor and seedling thermotolerance.  相似文献   

6.
7.
A cDNA library was constructed with mRNA isolated from heat-stressed cell cultures of Funaria hygrometrica (Bryophyta, Musci, Funariaceae). cDNA clones encoding six cytosolic small heat shock proteins (sHSPs) were identified using differential screening. Phylogenetic analysis of these sHSP sequences with other known sHSPs identified them as members of the previously described higher plant cytosolic class I and II families. Four of the F. hygrometrica sHSPs are members of the cytosolic class I family, and the other two are members of the cytosolic class II family. The presence of members of the cytosolic I and II sHSP families in a bryophyte indicates that these gene families are ancient, and evolved at least 450 MYA. This result also indicates that the plant sHSP gene families duplicated much earlier than did the well-studied phytochrome gene family. Members of the cytosolic I and II sHSP families are developmentally regulated in seeds and flowers in higher plants. Our findings show that the two cytosolic sHSP families evolved before the appearance of these specialized structures. Previous analysis of angiosperm sHSPs had identified class- or family-specific amino acid consensus regions and determined that rate heterogeneity exists among the different sHSP families. The analysis of the F. hygrometrica sHSP sequences reveals patterns and rates of evolution distinct from those seen among angiosperm sHSPs. Some, but not all, of the amino acid consensus regions identified in seed plants are conserved in the F. hygrometrica sHSPs. Taken together, the results of this study illuminate the evolution of the sHSP gene families and illustrate the importance of including representatives of basal land plant lineages in plant molecular evolutionary studies.  相似文献   

8.
9.
Plants synthesize four classes of small heat shock proteins (sHSPs); two classes are targeted to the plastid and endoplasmic reticulum, respectively, and two are found in the cytoplasm. In this paper, we describe a new role for the two classes of cytoplasmic HSPs in maturing embryos of developing seeds. The expression of each class of sHSPs was examined in pea seeds grown under non-stress conditions using Western and Northern analysis. Class I and class II cytoplasmic sHSPs are coordinately expressed in the embryo and accumulate to levels seen in moderately heat-stressed leaves. Their induction in cotyledons coincides with the mid-maturation phase of seed development, and induction in axes roughly coincides with abscission of the seed from the ovary wall. Both classes of sHSPs persisted in cotyledons for 4 days after the onset of imbibition, but disappeared from axes shortly after germination. Neither class of cytoplasmic sHSP is expressed in non-embryonic organs associated with the seed. The timing and organ specificity of sHSP expression is paralleled by the expression of the corresponding mRNAs. Neither the plastid nor the endoplasmic reticulum sHSPs were consistently expressed during seed development, but both could be induced by heat-stressing the developing seed. Developmental regulation of the cytoplasmic sHSPs is evidence that these proteins function not only in responding to heat-stress but also during seed development and/or germination.  相似文献   

10.
sHSP20.8 and sHSP19.9 are silkworm small-heat shock proteins (sHSPs) comprising a number of polypeptides of molecular sizes of several tens of kilodaltons as subunits. The structural properties of sHSPs were investigated. sHSP19.9 was found to be aggregated by itself during incubation at 60 °C. Aggregation was suppressed in the presence of dithiothreitol and at high ionic strength. In contrast, sHSP20.8 was not aggregated. Aggregation of sHSP19.9 was partially suppressed by sHSP20.8 and in the presence of catalase as a target protein. Based on changes in small-angle X-ray scattering, it is possible that the molecular size of sHSP19.9 is larger than that of sHSP20.8, and that their molecular sizes increase with increasing temperature in a reversible, biphasic manner. sHSPs did not protect catalase from thermal inactivation, but protected it from precipitation by forming a soluble complex. sHSP20.8 and sHSP19.9 with dithiothreitol were stable against lyophilization, autoclaving at 120 °C, and boiling.  相似文献   

11.
The small heat shock proteins (sHSPs) are a diverse family of molecular chaperones. It is well established that these proteins are crucial components of the plant heat shock response. They also have important roles in other stress responses and in normal development. We have conducted a comparative sequence analysis of the sHSPs in three complete angiosperms genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. Our phylogenetic analysis has identified four additional plant sHSP subfamilies and thus has increased the number of plant sHSP subfamilies from 7 to 11. We have also identified a number of novel sHSP genes in each genome that lack close homologs in other genomes. Using publicly available gene expression data and predicted secondary structures, we have determined that the sHSPs in plants are far more diverse in sequence, expression profile, and in structure than had been previously known. Some of the newly identified subfamilies are not stress regulated, may not posses the highly conserved large oligomer structure, and may not even function as molecular chaperones. We found no consistent evolutionary patterns across the three species studied. For example, gene conversion was found among the sHSPs in O. sativa but not in A. thaliana or P. trichocarpa. Among the three species, P. trichocarpa had the most sHSPs. This was due to an expansion of the cytosolic I sHSPs that was not seen in the other two species. Our analysis indicates that the sHSPs are a dynamic protein family in angiosperms with unexpected levels of diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis . Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.  相似文献   

13.
Proteomes of heat tolerant (multivoltine) and heat susceptible (bivoltine) silkworms (Bombyx mori) in response to heat shock were studied. Detected proteins from fat body were identified by using MALDI-TOF/TOF spectrometer, MS/MS, and MS analysis. Eight proteins, including small heat shock proteins (sHSPs) and HSP70, were expressed similarly in both breeds, while 4 protein spots were expressed specifically in the bivoltine breed and 12 protein spots were expressed specifically in the multivoltine breed. In the present proteomics approach, 5 separate spots of sHSP proteins (HSP19.9, HSP20.1, HSP20.4, HSP20.8, and HSP21.4) were identified. Protein spot intensity of sHSPs was lower in the multivoltine breed than in the bivoltine breed after the 45°C heat shock treatment, while the difference between two breeds was not significant after the 41°C heat shock treatment. These results indicated that some other mechanisms might be engaged in thermal tolerance of multivotine breed except for the expression of sHSP and HSP70. There were visible differences in the intensity of heat shock protein expression between male and female, however, differences were not statistically significant.  相似文献   

14.
Seven of the 10 mammalian small heat shock proteins (sHSP) are expressed in muscle where they constitute 3% or more of total protein. sHSPs interact with one another, and these interactions are believed to be important for their functions. In cell types expressing multiple sHSPs, it is of interest to know which sHSPs interact with one another. We have previously shown that HSP22 interacts with itself as well as with HSP27, MKBP, and cvHSP. Using yeast two-hybrid assays and F?rster resonance energy transfer microscopy, we now show that HSP22 also can interact with two additional members of the sHSP family, alphaB-crystallin and HSP20. We also show that HSP22 is found in HPLC fractions of primate cardiac muscle containing high molecular weight complexes that include alphaB-crystallin and HSP20. Our results suggest that a variety of oligomers composed of different proportions of different sHSPs may form in cell types expressing multiple sHSPs.  相似文献   

15.
16.
17.
Heat stress can negatively affect crop productivity. One way in which plants attempt to alleviate the effects of heat stress is to induce the expression of genes encoding heat shock proteins (HSPs), including small HSPs (sHSPs). We produced transgenic lines of Arabidopsis thaliana expressing a transgene encoding a maize mitochondrial sHSP, ZmHSP22. The transgene, under the control of the cauliflower mosaic virus 35S promoter, is constitutively highly expressed in these lines. As demonstrated by confocal immunofluorescence microscopy and analyses of isolated mitochondria, ZmHSP22 is directed to the mitochondria of Arabidopsis and is processed into the mature form. These transgenic lines demonstrated altered expression of nuclear genes encoding the endogenous mitochondrial sHSP, AtHSP23.6, chloroplast localized AtHSP25.3, class I cytosolic AtHSP17.4, cytosolic AtHSP70-1 and chloroplast localized AtHSP70-6, but not cytosolic AtHSP70-15, following exposure to heat stress. This suggests that the expression of HSPs can be affected by heat-induced mitochondrial retrograde regulation. Three-week-old plants from the transgenic Arabidopsis lines expressing ZmHSP22 have increased thermotolerance, as measured by the maintenance of higher leaf mass following successive days with short periods of heat stress.  相似文献   

18.
19.
Small heat shock proteins (sHSPs) are a ubiquitous class of molecular chaperones that interacts with substrates to prevent their irreversible insolubilization during denaturation. How sHSPs interact with substrates remains poorly defined. To investigate the role of the conserved C-terminal alpha-crystallin domain versus the variable N-terminal arm in substrate interactions, we compared two closely related dodecameric plant sHSPs, Hsp18.1 and Hsp16.9, and four chimeras of these two sHSPs, in which all or part of the N-terminal arm was switched. The efficiency of substrate protection and formation of sHSP-substrate complexes by these sHSPs with three different model substrates, firefly luciferase, citrate synthase, and malate dehydrogenase (MDH) provide new insights into sHSP/substrate interactions. Results indicate that different substrates have varying affinities for different domains of the sHSP. For luciferase and citrate synthase, the efficiency of substrate protection was determined by the identity of the N-terminal arm in the chimeric proteins. In contrast, for MDH, efficient protection clearly required interactions with the alpha-crystallin domain in addition to the N-terminal arm. Furthermore, we show that sHSP-substrate complexes with varying stability and composition can protect substrate equally, and substrate protection is not correlated with sHSP oligomeric stability for all substrates. Protection of MDH by the dimeric chimera composed of the Hsp16.9 N-terminal arm and Hsp18.1 alpha-crystallin domain supports the model that a dimeric form of the sHSP can bind and protect substrate. In total, results demonstrate that sHSP-substrate interactions are complex, likely involve multiple sites on the sHSP, and vary depending on substrate.  相似文献   

20.
Previously, we identified a new mammalian sHSP, MKBP, as a myotonic dystrophy protein kinase-binding protein, and suggested its important role in muscle maintenance (Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu-i, N., Yoshida, M., Nonaka, I., Ishiura, S., Arahata, K., and Ohno, S. (1998) J. Cell Biol. 140, 1113-1124). In this paper, we develop the former work by performing extensive characterization of five of the six sHSPs so far identified, that is, HSP27, alphaB-crystallin, p20, MKBP/HSPB2, and HSPB3, omitting lens-specific alphaA-crystallin. Tissue distribution analysis revealed that although each sHSP shows differential constitutive expression in restricted tissues, tissues that express all five sHSPs are only muscle-related tissues. Especially, the expressions of HSPB3, identified for the first time as a 17-kDa protein in this paper, and MKBP/HSPB2 are distinctly specific to muscles. Moreover, these sHSPs form an oligomeric complex with an apparent molecular mass of 150 kDa that is completely independent of the oligomers formed by HSP27, alphaB-crystallin, and p20. The expressions of MKBP/HSPB2 and HSPB3 are induced during muscle differentiation under the control of MyoD, suggesting that the sHSP oligomer comprising MKBP/HSPB2 and HSPB3 represents an additional system closely related to muscle function. The functional divergence among sHSPs in different oligomers is also demonstrated in several ways: 1) an interaction with myotonic dystrophy protein kinase, which has been suggested to be important for the maintenance of myofibril integrity, was observed only for MKBP/HSPB2; 2) a myotube-specific association with actin bundles was observed for HSP27 and alphaB-crystallin, but not for MKBP/HSPB2; and 3) sHSPs whose mRNAs are induced by heat shock are alphaB-crystallin and HSP27. Taken together, the results suggest that muscle cells develop two kinds of stress response systems composed of diverged sHSP members, and that these systems work independently in muscle maintenance and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号