首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcin J25 (MccJ25) is the single representative of the immunity group J of the microcin group of peptide antibiotics produced by Enterobacteriaceae. It induces bacterial filamentation in susceptible cells in a non-SOS-dependent pathway [R. A. Salomon and R. Farias (1992) J. Bacteriol. 174, 7428-7435]. MccJ25 was purified to homogeneity from the growth medium of a microcin-overproducing Escherichia coli strain by reverse-phase HPLC. Based on amino acid composition and absolute configuration determination, liquid secondary ion and electrospray mass spectrometry, extensive two-dimensional NMR, enzymatic and chemical degradations studies, the structure of MccJ25 was elucidated as a 21-residue peptide, cyclo(-Val1-Gly-Ile-Gly-Thr- Pro-Ile-Ser-Phe-Tyr-Gly-Gly-Gly-Ala-Gly-His-Val-Pro-Glu-Tyr-Phe21- ). Although MccJ25 showed high resistance to most of endoproteases, linearization by thermolysin occurred from cleavage at the Phe21-Val1 bond and led to a single peptide, MccJ25-L. While MccJ25 exhibited remarkable antibiotic activity towards Salmonella newport and several E. coli strains (minimal inhibitory concentrations ranging between 0.01 and 0.2 microgram.mL-1), the thermolysin-linearized microcin showed a dramatic decrease of the activity, indicating that the cyclic structure is essential for the MccJ25 biological properties. As MccJ25 is ribosomally synthesized as a larger peptide precursor endowed with an N-terminal extremity, the present study shows that removal of this extension and head-tail cyclization of the resulting propeptide are the only post-translational modifications involved in the maturation of MccJ25, that appears as the first cyclic microcin.  相似文献   

2.
Microcin J25 (MccJ25) is a plasmid-encoded, ribosomally synthesized antibacterial peptide with a unique lasso structure. The lasso structure, produced with the aid of two processing enzymes, provides exceptional stability to MccJ25. We report the synthesis of six peptides (1-6), derived from the MccJ25 sequence, that are designed to form folded conformation by disulfide bond formation and electrostatic or hydrophobic interactions. Two peptides (1 and 6) display good activity against Salmonella newport, and are the first synthetic derivatives of MccJ25 that are bactericidal. Peptide 1 displays potent activity against several Salmonella strains including two MccJ25 resistant strains. The solution conformation and the stability studies of the active peptides suggest that they do not fold into a lasso conformation and peptide 1 displays antimicrobial activity by inhibition of target cell respiration. Like MccJ25, the synthetic MccJ25 derivatives display minimal toxicity to mammalian cells suggesting that these peptides act specifically on bacterial cells.  相似文献   

3.
The antibiotic microcin J25 (MccJ25) was cleaved by hydrolysis with thermolysin giving a two-chain peptide (MccJ25-Th19) of 10 and 9 amino acid residues. MccJ25-Th19 with deep modifications in beta-hairpin region had no effect on Escherichia coli growth, but still inhibited RNA polymerase in vitro and oxygen consumption in Salmonella strains. MccJ25-Th19 showed antibiotic activity on E. coli transformed with plasmids containing either fhuA or sbmA genes, which code for proteins involved in MccJ25 transport. These results suggest that an intact beta-hairpin region is crucial for MccJ25 import but not for inhibition of E. coli RNA polymerase or oxygen consumption in Salmonella strains.  相似文献   

4.
Escherichia coli microcin J25 (MccJ25) is a 2107-Da peptide antibiotic whose uptake into E. coli is mediated by the outer-membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD, and SbmA. A survey of the sensitivity of several Salmonella enterica serovars showed that the antibiotic was highly active against some serovars, while S. Typhimurium, S. Derby, and some S. Enteritidis strains were completely resistant. Resistant strains became hypersensitive to MccJ25 when given the fhuA gene of E. coli, indicating that insensitivity is due to the inability of the FhuA protein to mediate penetration of MccJ25. Whereas in E. coli MccJ25 targets RNA polymerase, in S. Typhimurium it inhibits not only RNA synthesis but also cell respiration. Fluorescence viability staining showed that S. Typhimurium cells exposed to MccJ25 remain viable but are unable to form colonies.  相似文献   

5.
Escherichia coli microcin J25 (MccJ25) is a plasmid-encoded antibiotic peptide consisting of 21 L-amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G). E. coli RNA polymerase (RNAP) is the intracellular target of MccJ25. MccJ25 enters cells after binding to specific membrane transporters: FhuA in the outer membrane and SbmA in the inner membrane. Here, we studied MccJ25 mutants carrying a substitution of His5 by Lys, Arg, or Ala. The inhibitory effects on cellular growth and in vitro RNAP activity were determined for each mutant microcin. The results show that all mutants inhibited RNAP in vitro. However, the mutants were defective in their ability to inhibit cellular growth. Experiments in which the FhuA protein was bypassed showed that substitutions of MccJ25 His5 affected the SbmA-dependent transport. Our results thus suggest that MccJ25 His5 located in the lariat ring is involved, directly or indirectly, in specific interaction with SbmA and is not required for MccJ25 inhibition of RNAP.  相似文献   

6.
Microcin J25 (MccJ25) is the single macrocyclic antimicrobial peptide belonging to the ribosomally synthesized class of microcins that are secreted by Enterobacteriaceae. It showed potent antibacterial activity against several Salmonella and Escherichia strains and exhibited a compact three-dimensional structure [Blond et al. (2001) Eur. J. Biochem., 268, 2124-2133]. The molecular mechanisms involved in the biosynthesis, folding and mode of action of MccJ25 are still unknown. We have investigated the structure and the antimicrobial activity of thermolysin-linearized MccJ25 (MccJ25-L1-21: VGIGTPISFY10GGGAGHVPEY20F), as well as two synthetic analogs, sMccJ25-L1-21 (sequence of the thermolysin-cleaved MccJ25) and sMccJ25-L12-11 (C-terminal sequence of the MccJ25 precursor: G12GAGHVPEYF21V1GIGTPISFYG11). The three-dimensional solution structure of MccJ25-L1-21, determined by two-dimensional NMR, consists of a boot-shaped hairpin-like well-defined 8-19 region flanked by disordered N and C termini. This structure is remarkably similar to that of cyclic MccJ25, and includes a short double-stranded antiparallel beta-sheet (8-10/17-19) perpendicular to a loop (Gly11-His16). The thermolysin-linearized MccJ25-L1-21 had antibacterial activity against E. coli and S. enteritidis strains, while both synthetic analogues lacked activity and organized structure. We show that the 8-10/17-19 beta-sheet, as well as the Gly11-His16 loop are required for moderate antibacterial activity and that the Phe21-Pro6 loop and the MccJ25 macrocyclic backbone are necessary for complete antibacterial activity. We also reveal a highly stable 8-19 structured core present in both the native MccJ25 and the thermolysin-linearized peptide, which is maintained under thermolysin treatment and resists highly denaturing conditions.  相似文献   

7.
Microcin J25 (MccJ25) uptake by Escherichia coli requires the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbD, ExbB, and SbmA. MccJ25 appears to have two intracellular targets: (i) RNA polymerase (RNAP), which has been described in E. coli and Salmonella enterica serovars, and (ii) the respiratory chain, reported only in S. enterica serovars. In the current study, it is shown that the observed difference between the actions of microcin on the respiratory chain in E. coli and S. enterica is due to the relatively low microcin uptake via the chromosomally encoded FhuA. Higher expression by a plasmid-encoded FhuA allowed greater uptake of MccJ25 by E. coli strains and the consequent inhibition of oxygen consumption. The two mechanisms, inhibition of RNAP and oxygen consumption, are independent of each other. Further analysis revealed for the first time that MccJ25 stimulates the production of reactive oxygen species (O(2)(*-)) in bacterial cells, which could be the main reason for the damage produced on the membrane respiratory chain.  相似文献   

8.
Entry of the peptide antibiotic microcin J25 (MccJ25) into target cells is mediated by the outer membrane receptor FhuA and the inner membrane protein SbmA. The latter also transports MccB17 into the cell cytoplasm. Comparison of MccJ25 and MccB17 revealed a tetrapeptide sequence (VGIG) common to both antibiotics. We speculated that this structural feature in MccJ25 could be a motif recognized by SbmA. To test this hypothesis, we used a MccJ25 variant in which the isoleucine in VGIG (position 13 in the MccJ25 sequence) was replaced by lysine (I13K). In experiments in which the FhuA receptor was bypassed, the substituted microcin showed an inhibitory activity similar to that of the wild-type peptide. Moreover, MccJ25 interfered with colicin M uptake by FhuA in a competition assay, while the I13K mutant did not. From these results, we propose that the Ile13 residue is only required for interaction with FhuA, and that VGIG is not a major recognition element by SbmA.  相似文献   

9.
Microcin J25 (MccJ25) is a plasmid-encoded, 21-amino-acid, antibacterial peptide produced by Escherichia coli. MccJ25 inhibits RNA polymerase and the membrane respiratory chain. MccJ25 uptake into E. coli-sensitive strains is mediated by the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbB, ExbD, and SbmA. This peptide is active on some E. coli, Salmonella, and Shigella species strains, while other Gram-negative bacteria, such as clinical isolates of Enterobacter cloacae, Citrobacter freundii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Moraxella catarrhalis, and Salmonella enterica serovar Typhimurium, are completely resistant. In the present work, we demonstrated that the membrane-permeabilizing peptide (KFF)3K made some resistant strains sensitive to MccJ25, among them S. Typhimurium, where the antibiotic inhibits in vitro cell growth and bacterial replication within macrophages. The results demonstrate that the membrane permeabilization induced by (KFF)3K allows MccJ25 penetration in an FhuA and SbmA-independent manner and suggest that the combination of both peptides could be considered as a therapeutic agent against pathogenic Salmonella strains.The antibiotic peptide microcin J25 (MccJ25), produced by an Escherichia coli strain, is ribosomally synthesized and consists of 21 amino acid residues (G1-G-A-G-H5-V-P-E-Y-F10-V-G-I-G-T15-P-I-S-F-Y20-G) (4, 12). MccJ25 is a lasso peptide (1, 10, 17), contains a lactam linkage between the α-amino group of Gly1 and the γ-carboxyl of Glu8, forming an 8-residue ring (Gly1 to Glu8), which is termed a lariat ring. The “tail” (Tyr9 to Gly21) passes through the ring, with Phe19 and Tyr20 straddling each side of the tail, sterically trapping the tail within the ring. MccJ25 amino acids F10 to P16 form a β-hairpin structure comprising two β-strands (F10-V11 and T15-P16) and a β-turn (V11 to G14).The uptake of MccJ25 into the E. coli periplasmic space depends on the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbD, and ExbB (11, 13). Additionally, the inner membrane protein SbmA transports MccJ25 from the periplasmic to the cytoplasmic space (13). Once inside the sensitive cell, the peptide is able to inhibit E. coli RNA polymerase (RNAP) and membrane respiratory chain, which represent the MccJ25 targets (2, 5, 7, 18). Several Salmonella enterica serovars showed high sensitivity against MccJ25, while others, like Salmonella enterica serovar Typhimurium, S. enterica serovar Derby, and some S. enterica serovar Enteritidis strains were completely resistant (16). Since introduction of the E. coli fhuA allele cloned in a multicopy plasmid into these bacteria rendered them hypersensitive to the antibiotic, we concluded that this intrinsic resistance is due to the inability of the FhuA receptor protein to mediate the penetration of MccJ25. In fact, MccJ25 was able to inhibit both intracellular targets in the transformed strains (16).The polianionic lipopolysaccharide (LPS) component of the outer membrane is stabilized by divalent cation bridges (15). It was suggested that many cationic peptides are able to bind to LPS and disrupt these bridges, resulting in an increased bacterial membrane permeabilization. Vaara and Porro (15) characterized a series of synthetic peptides that were able to sensitize Gram-negative bacteria to hydrophobic and amphipathic antibiotics. One of them, KFFKFFKFFK [(KFF)3K], a peptide rich in cationic lysine and hydrophobic phenylalanine residues, showed a potent effect on outer membrane disorganization and weak damage to the cytoplasmic membrane (15).In this work, we have shown that the (KFF)3K peptide allows MccJ25 uptake independently of the FhuA and SbmA receptors, turning in vitro microcin-resistant strains into susceptible ones. Moreover, we have demonstrated that (KFF)3K was able to exert the same inhibitory effect in vivo on S. Typhimurium replicating within eukaryotic cells.  相似文献   

10.
Microcin J25 appears to have two intracellular targets: (1) RNA polymerase, which was described in Escherichia coli and Salmonella enterica serovars, and (2) cell respiration in Salmonella enterica serovars. C-terminal glycine amidation of the threaded segment localized in the MccJ25 lariat ring region specifically blocked the RNA-polymerase inhibition, but not the cell respiration inhibition and peptide uptake. These results suggest that different regions of the molecule are responsible for each cellular effect, they are localized far away from the beta-hairpin region and the C-terminal region is an important determinant for RNAP inhibition.  相似文献   

11.
In this paper we compared the antibacterial activity of native microcin J25, a peptide antibiotic, with the activities of two analogues obtained by chemical modifications. In the first analogue, the negative charge of glutamic carboxyl group was specifically blocked with an L-glycine methyl ester and in the second the histidine imidazole ring was carbethoxylated. Both analogues decreased notably its antibiotic activity against Escherichia coli and Salmonella newport, strains sensible to the native microcin J25. The biological activity of the carbethoxylated analogue was completely recovered after treatment with hydroxylamine. The extreme importance of both polar residues could be interpreted as specific structural features indispensable for the peptide transportation into the cell, extrusion outside the cell or alternatively to inhibit the RNA-polymerase.  相似文献   

12.
13.
Microcin J25 (MccJ25) is a small peptide antibiotic produced by an Escherichia coli strain isolated from human feces. The genetic determinants for MccJ25 synthesis and immunity have been cloned from the low-copy-number wild-type plasmid pTUC1OO into the compatible vectors pBR322 and pACYC184. Physical and phenotypical analysis of insertion mutations and complementation tests defined three contiguous genes involved in MccJ25 production which span a region of about 2.2 kb. Immunity to the antibiotic is provided by an additional gene adjacent to the production region.  相似文献   

14.
15.
16.
MccJ25, an antimicrobial peptide, was unable to cause apoptosis of COS-7 cells in spite of inducing reactive-oxygen species overproduction as well as cytochrome c release from isolated mitochondria. Surprisingly, MccJ25-Ga, an amidated variant of MccJ25 that displays similar anti-mitochondrial effects, did induce apoptosis in COS-7. The only difference found between the activities of these peptides was the unpredicted inhibition of mitochondrial RNA synthesis by MccJ25-Ga. These results led us to hypothesize that both mitochondrial RNA polymerase and mitochondrial membrane might be the molecular targets of MccJ25-Ga in mitochondria and this combined effect may lead to apoptosis.  相似文献   

17.
Survival of pathogenic bacteria in various freshwater sediments   总被引:4,自引:0,他引:4  
Four human-associated bacteria, Pseudomonas aeruginosa, Salmonella newport, Escherichia coli, and Klebsiella pneumoniae, were tested for survival in five freshwater sediments. Bacterial survival in continuous-flow chambers was monitored over 14-day periods on sediments ranging from organically rich high-clay fractions to organically poor sandy fractions. Bacterial die-off ranged from 1 to 5 orders of magnitude in sediments. E. coli survived as long as or longer than S. newport. P. aeruginosa and K. pneumoniae tended to survive longer than E. coli. Survival of E. coli and S. newport was greater in sediments containing at least 25% clay. Good reproducibility allowed the development of linear models to describe die-off rates.  相似文献   

18.
The interaction of the tryptophan-containing variant of microcin J25, MccJ25 I13W, with phosphatidylcholine membranes was studied by fluorescence spectroscopy techniques. The peptide was able to interact with dimiristoylphophatidylcholine and dipalmitoylphosphatidylcholine liposomes only when the membranes were in gel phase, as was demonstrated by the blue shift of the intrinsic fluorescence of MccJ25 I13W. The binding isotherm showed a cooperative partition of the peptide toward the membrane and the binding constant increased as the temperature decreased and the order parameter increased. No interaction with liquid crystalline membranes was observed. Studies of dynamic quenching of the fluorescence indicated that the peptide penetrated the lipid bilayer and was located primarily in the interfacial region. Our results suggest that MccJ25 I13W interacts with gel phase phospholipids and increases both its own affinity for the bilayer and the membrane permeability of small ions.  相似文献   

19.
Survival of pathogenic bacteria in various freshwater sediments.   总被引:11,自引:9,他引:2       下载免费PDF全文
Four human-associated bacteria, Pseudomonas aeruginosa, Salmonella newport, Escherichia coli, and Klebsiella pneumoniae, were tested for survival in five freshwater sediments. Bacterial survival in continuous-flow chambers was monitored over 14-day periods on sediments ranging from organically rich high-clay fractions to organically poor sandy fractions. Bacterial die-off ranged from 1 to 5 orders of magnitude in sediments. E. coli survived as long as or longer than S. newport. P. aeruginosa and K. pneumoniae tended to survive longer than E. coli. Survival of E. coli and S. newport was greater in sediments containing at least 25% clay. Good reproducibility allowed the development of linear models to describe die-off rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号