首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six bacteriocinlike peptides (plantaricin A [PlnA], PlnE, PlnF, PlnJ, PlnK, and PlnN) produced by Lactobacillus plantarum C11 were detected by amino acid sequencing and mass spectrometry. Since purification to homogeneity was problematic, all six peptides were obtained by solid-phase peptide synthesis and were tested for bacteriocin activity. It was found that L. plantarum C11 produces two two-peptide bacteriocins (PlnEF and PlnJK); a strain-specific antagonistic activity was detected at nanomolar concentrations when PlnE and PlnF were combined and when PlnJ and PlnK were combined. Complementary peptides were at least 103 times more active when they were combined than when they were present individually, and optimal activity was obtained when the complementary peptides were present in approximately equal amounts. The interaction between complementary peptides was specific, since neither PlnE nor PlnF could complement PlnJ or PlnK, and none of these peptides could complement the peptides constituting the two-peptide bacteriocin lactococcin G. Interestingly, PlnA, which acts as an extracellular signal (pheromone) that triggers bacteriocin production, also possessed a strain-specific antagonistic activity. No bacteriocin activity could be detected for PlnN.  相似文献   

2.
The three-dimensional structures of the two peptides, PlnJ and PlnK, that constitutes the two-peptide bacteriocin plantaricin JK have been solved in water/TFE and water/DPC-micellar solutions using nuclear magnetic resonance (NMR) spectroscopy. PlnJ, a 25 residue peptide, has an N-terminal amphiphilic α-helix between Trp-3 and Tyr-15. The 32 residues long PlnK forms a central amphiphilic α-helix between Gly-9 and Leu-24. Measurements of the effect on anti-microbial activity of single glycine replacements in PlnJ and PlnK show that Gly-13 and Gly-17 in both peptides are very sensitive, giving more than a 100-fold reduction in activity when large residues replace glycine. In variants where other glycine residues, Gly-20 in PlnJ and Gly-7, Gly-9, Gly-24 and Gly-25 in PlnK, were replaced, the activity was reduced less than 10-fold. It is proposed that the detrimental effect on activity when exchanging Gly-13 and Gly-17 in PlnJ and PlnK is a result of reduced ability of the two peptides to interact through the GxxxG-motifs constituting Gly-13 and Gly-17.  相似文献   

3.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

4.
The fungicidal effect of plantaricin peptides PlnE, -F, -J, and -K was studied against pathogenic yeast, Candida albicans. Dose-dependent inhibitory effect was observed by drop in cell viability, further demonstrated by measuring the fluorescence intensity of cells by exposing them to 5, (6)-carboxyfluorescein diacetate (CFDA). Live/dead staining by CFDA and propidium iodide (PI) also suggested the viability loss response. Also, the PI uptake by treated cells suggested the membrane damage. PlnJ was identified as most inhibitory among different plantaricins tested. PlnJ not only induced membrane potential dissipation but also resulted in the release of K+. In addition, enhanced production of reactive oxygen species (ROS) was also observed by fluorometry using 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA). Dual staining with Hoechst stain and PI depicted both early apoptotic and necrotic cells in the treated population. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) positive staining further confirmed the ROS-mediated apoptosis. Scanning electron microscopy and transmission electron microscopy also revealed characteristic apoptotic features such as appearance of blebs, indentations, and wrinkling of the cell wall, discontinuity of cell membrane, undefined and damaged nuclei, and shrinkage of protoplasm. Taken together the results suggest that Pln-treatment initiate the apoptosis cell death which may lead to necrosis due to toxicity of the plantaricin peptides.  相似文献   

5.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

6.
Yang ST  Lee JY  Kim HJ  Eu YJ  Shin SY  Hahm KS  Kim JI 《The FEBS journal》2006,273(17):4040-4054
Model amphipathic peptides have been widely used as a tool to determine the structural and biological properties that control the interaction of peptides with membranes. Here, we have focused on the role of a central Pro in membrane-active peptides. To determine the role of Pro in structure, antibiotic activity, and interaction with phospholipids, we generated a series of model amphipathic alpha-helical peptides with different chain lengths and containing or lacking a single central Pro. CD studies showed that Pro-free peptides (PFPs) formed stable alpha-helical structures even in aqueous buffer through self-association, whereas Pro-containing peptides (PCPs) had random coil structures. In contrast, in trifluoroethanol or SDS micelles, both PFPs and PCPs adopted highly ordered alpha-helical structures, although relatively lower helical contents were observed for the PCPs than the PFPs. This structural consequence indicates that a central Pro residue limits the formation of highly helical aggregates in aqueous buffer and causes a partial distortion of the stable alpha-helix in membrane-mimetic environments. With regard to antibiotic activity, PCPs had a 2-8-fold higher antibacterial activity and significantly reduced hemolytic activity compared with PFPs. In membrane depolarization assays, PCPs passed rapidly across the peptidoglycan layer and immediately dissipated the membrane potential in Staphylococcus aureus, whereas PFPs had a greatly reduced ability. Fluorescence studies indicated that, although PFPs had strong binding affinity for both zwitterionic and anionic liposomes, PCPs interacted weakly with zwitterionic liposomes and strongly with anionic liposomes. The selective membrane interaction of PCPs with negatively charged phospholipids may explain their antibacterial selectivity. The difference in mode of action between PCPs and PFPs was further supported by kinetic analysis of surface plasmon resonance data. The possible role of the increased local backbone distortion or flexibility introduced by the proline residue in the antimicrobial mode of action is discussed.  相似文献   

7.
Interaction of cationic antimicrobial peptides with model membranes   总被引:14,自引:0,他引:14  
A series of natural and synthetic cationic antimicrobial peptides from various structural classes, including alpha-helical, beta-sheet, extended, and cyclic, were examined for their ability to interact with model membranes, assessing penetration of phospholipid monolayers and induction of lipid flip-flop, membrane leakiness, and peptide translocation across the bilayer of large unilamellar liposomes, at a range of peptide/lipid ratios. All peptides were able to penetrate into monolayers made with negatively charged phospholipids, but only two interacted weakly with neutral lipids. Peptide-mediated lipid flip-flop generally occurred at peptide concentrations that were 3- to 5-fold lower than those causing leakage of calcein across the membrane, regardless of peptide structure. With the exception of two alpha-helical peptides V681(n) and V25(p,) the extent of peptide-induced calcein release from large unilamellar liposomes was generally low at peptide/lipid molar ratios below 1:50. Peptide translocation across bilayers was found to be higher for the beta-sheet peptide polyphemusin, intermediate for alpha-helical peptides, and low for extended peptides. Overall, whereas all studied cationic antimicrobial peptides interacted with membranes, they were quite heterogeneous in their impact on these membranes.  相似文献   

8.
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 μM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.  相似文献   

9.
Hipposin is a potent 51-mer antimicrobial peptide (AMP) from Atlantic halibut with sequence similarity to parasin (19-mer catfish AMP), buforin I (39-mer toad AMP), and buforin II (an active 21-mer fragment of buforin I), suggesting that the antimicrobial activity of these peptides might all be due to a common antimicrobial sequence motif. In order to identify the putative sequence motif, the antimicrobial activity of hipposin fragments against 20 different bacteria was compared to the activity of hipposin, parasin and buforin II. Neither parasin nor the 19-mer parasin-like fragment HIP(1-19) (differs from parasin in only three residues) that is derived from the N-terminal part (residues 1-19) of hipposin had marked antimicrobial activity. In contrast, the fragment HIP(16-36) (identical to buforin II) that is derived from the middle part of hipposin (residues 16-36) had such activity, indicating that this part of hipposin contained an antimicrobial sequence motif. The activity was enhanced when the parasin-like N-terminal sequence was also present, as the fragment HIP(1-36) which consists of residues 1-36 in hipposin was more potent than HIP(16-36). Extending HIP(1-36) with three C-terminal residues-thereby constructing the buforin I-like peptide HIP(1-39) (differs from buforin I in only three residues)-increased the activity further. Also, the presence of the C-terminal part of hipposin (residues 40-51) increased the activity, as hipposin was clearly the most potent of all the peptides that were tested. Circular dichroism structural analysis of the peptides revealed that they were all non-structured in aqueous solution. However, trifluoroethanol and the membrane-mimicking entities dodecylphosphocholine micelles and negatively charged liposomes induced (amphiphilic) alpha-helical structuring in hipposin. Judging from the structuring of the individual fragments, the tendency for alpha-helical structuring appeared to be greater in the C-terminal and the buforin II-like middle region of hipposin than in the parasin-like N-terminal region.  相似文献   

10.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

11.
研究抗菌肽BuforinⅡ的衍生肽BF2-A/B对细菌表面特性的影响,以及与脂质体的作用模式。Zeta电位仪和十六烷萃取法检测发现BF2-A/B作用G-菌和G+菌后,能够提高细胞表面电负性和疏水性。选用卵磷脂和心磷脂制备包裹钙黄绿素的脂质体,模拟细菌胞膜,考察发现BF2-A/B能够引起荧光素从脂质体中泄漏,BF2-B对膜的扰动作用更大,引起的泄漏率比BF2-A高,但它们都不破裂脂质体膜。用FITC标记衍生肽,研究发现加入脂质体后,FITC-肽荧光光谱蓝移,量子产率增大,并且脂质体保护FITC-肽免受丙烯酰胺的荧光淬灭,说明BF2-A/B的N-端插入了脂质体的磷脂双分子层中。  相似文献   

12.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   

13.
The peptide NK-2 is an effective antimicrobial agent with low hemolytic and cytotoxic activities and is thus a promising candidate for clinical applications. It comprises the alpha-helical, cationic core region of porcine NK-lysin a homolog of human granulysin and of amoebapores of pathogenic amoeba. Here we visualized the impact of NK-2 on Escherichia coli by electron microscopy and used NK-2 as a template for sequence variations to improve the peptide stability and activity and to gain insight into the structure/function relationships. We synthesized 18 new peptides and tested their activities on seven Gram-negative and one Gram-positive bacterial strains, human erythrocytes, and HeLa cells. Although all peptides appeared unordered in buffer, those active against bacteria adopted an alpha-helical conformation in membrane-mimetic environments like trifluoroethanol and negatively charged phosphatidylglycerol (PG) liposomes that mimick the cytoplasmic membrane of bacteria. This conformation was not observed in the presence of liposomes consisting of zwitterionic phosphatidylcholine (PC) typical for the human cell plasma membrane. The interaction was paralleled by intercalation of these peptides into PG liposomes as determined by FRET spectroscopy. A comparative analysis between biological activity and the calculated peptide parameters revealed that the decisive factor for a broad spectrum activity is not the peptide overall hydrophobicity or amphipathicity, but the possession of a minimal positive net charge plus a highly amphipathic anchor point of only seven amino acid residues (two helical turns).  相似文献   

14.
Bactericidal Mode of Action of Plantaricin C   总被引:6,自引:4,他引:2       下载免费PDF全文
Plantaricin C is a bacteriocin produced by Lactobacillus plantarum LL441 that kills sensitive cells by acting on the cytoplasmic membrane. In contrast to its lack of impact on immune cells, plantaricin C dissipates the proton motive force and inhibits amino acid transport in sensitive cells. In proteoliposomes, plantaricin C dissipates the transmembrane electrical potential, and in liposomes, it elicits efflux of entrapped carboxy-fluorescein. It is concluded that plantaricin C is a pore-forming bacteriocin that functions in a voltage-independent manner and does not require a specific protein receptor in the target membrane.  相似文献   

15.
The membrane lipid phase may be an important mediator of the peptide-receptor interaction. In order to understand the mechanism of this interaction, it is important to know the peptide structure, not only in the hydrophobic lipid bilayer environment, but also at the bilayer surface and in solution. To investigate this problem we have measured the secondary structure of the 11-residue neuropeptide substance P (SP) and its fragments in aqueous solutions, in membrane mimetic solvents, and associated with lipid bilayers using Raman and CD spectroscopy. Raman and CD spectra of SP bound to liposomes indicate a less than 20% helix content. We interpret these results to indicate that SP contains virtually no helix when bound to negatively charged liposomes. These spectra are similar to spectra of peptides in type I and III beta-turns. SP forms between 10 and 30% (1-3 residues) helical structure in sodium dodecyl sulfate micelles and less than 10% helix in methanol and trifluoroethanol. The binding of SP to negatively charged liposomes significantly changes the structure of the lipid acyl chains, decreasing order in some cases and increasing it in others. Raman spectra of SP in water indicates that SP near 30 mM forms an ensemble of structures in water that is distinct from completely unfolded peptide and from the aggregated beta-sheet form observed in saline solutions. We conclude from our CD results that methods used to quantitate secondary structure from CD spectra of short peptides cannot be used to distinguish between very short helical segments and beta-turns.  相似文献   

16.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

17.
The carboxyl terminus of the type-1 angiotensin II receptor (AT(1A)) is a focal point for receptor activation and deactivation. Synthetic peptides corresponding to the membrane-proximal, first 20 amino acids of the carboxyl terminus adopt an alpha-helical conformation in organic solvents, suggesting that the secondary structure of this region may be sensitive to hydrophobic environments. Using surface plasmon resonance, immobilized lipid chromatography, and circular dichroism, we examined whether this positively charged, amphipathic alpha-helical region of the AT(1A) receptor can interact with lipid components in the cell membrane and thereby modulate local receptor attachment and structure. A synthetic peptide corresponding to the proximal region of the AT(1A) receptor carboxyl terminus (Leu(305) to Lys(325)) was shown by surface plasmon resonance to bind with high affinity to the negatively charged lipid, dimyristoyl L-alpha-phosphatidyl-DL-glycerol (DMPG), but poorly to the zwitterionic lipid, dimyristoyl L-alpha-phosphatidylcholine (DMPC). In contrast, a peptide analogue possessing substitutions at four lysine residues (corresponding to Lys(307,308,310,311)) displayed poor association with either lipid, indicating a crucial anionic component to the interaction. Circular dichroism analysis revealed that both the wild-type and substituted peptides possessed alpha-helical propensity in methanol and trifluoroethanol, while the wild-type peptide also adopted partially inserted helical structure in DMPG and DMPC liposomes. In contrast, the substituted peptide exhibited spectra that suggested the presence of beta-sheet and alpha-helical structure in both liposomes. Immobilized lipid chromatography was used to characterize the hydrophobic component of the membrane interaction, and the results demonstrated that hydrophobic and electrostatic interactions mediated the binding of the wild-type peptide but that the substituted peptide bound to the model membranes mainly via hydrophobic forces. We propose that, in intact AT(1A) receptors, the proximal carboxyl terminus associates with the cytoplasmic face of the cell membrane via a high-affinity, anionic phospholipid-specific tethering that serves to increase the amphipathic helicity of this region. Such associations may be important for receptor function and common for G protein-coupled receptors.  相似文献   

18.
Cell-associated TNF-alpha, either bound to its receptor on monocyte membranes or expressed as an integral membrane protein, can exert potent tumor cytolytic activity. We assessed the interaction of TNF with the lipid bilayer membrane system, liposomes, and the effects of membrane association on TNF bioactivity. High levels of TNF can be encapsulated within liposomes. At neutral pH, TNF binds to the surface of preformed liposomes (liposome-associated TNF), but does not partition into the lipid bilayer. TNF appears to bind to negatively charged phospholipid head groups of the outer membrane leaflet. Free TNF, liposome-associated TNF, and liposome-encapsulated TNF display comparable abilities to activate human peripheral blood monocytes and to lyse tumor cells. However, liposome-encapsulated TNF, as well as TNF bound to the outer surface of preformed liposomes, retains bioactivity in the presence of anti-TNF antibodies that neutralize free TNF. The interaction of liposomal TNF with cell surface TNF receptors thus appears to be preserved in the presence of neutralizing antibodies.  相似文献   

19.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Solid-state NMR and CD spectroscopy were used to study the effect of antimicrobial peptides (aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1) from Australian tree frogs on phospholipid membranes. 31P NMR results revealed some effect on the phospholipid headgroups when the peptides interact with DMPC/DHPC (dimyristoylphosphatidylcholine/dihexanoylphosphatidylcholine) bicelles and aligned DMPC multilayers. 2H NMR showed a small effect of the peptides on the acyl chains of DMPC in bicelles or aligned multilayers, suggesting interaction with the membrane surface for the shorter peptides and partial insertion for the longer peptides. 15N NMR of selectively labelled peptides in aligned membranes and oriented CD spectra indicated an alpha-helical conformation with helix long axis approximately 50 degrees to the bilayer surface at high peptide concentrations. The peptides did not appear to insert deeply into PC membranes, which may explain why these positively charged peptides preferentially lyse bacterial rather than eucaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号