首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

2.
This study examined the potential role of restricted phloem export, or import of substances from the roots in the leaf growth response to root hypoxia. In addition, the effects of root hypoxia on abscisic acid (ABA) and zeatin riboside (ZR) levels were measured and their effects on in vitro growth determined. Imposition of root hypoxia in the dark when transpirational water flux was minimal delayed the reduction in leaf growth until the following light period. Restriction of phloem transport by stem girdling did not eliminate the hypoxia-induced reduction in leaf growth. In vitro growth of leaf discs was inhibited in the presence of xylem sap collected from hypoxic roots, and also by millimolar ABA. Disc growth was promoted by sap from aerated roots and by 0.1 micromolar ZR. The flux of both ABA and ZR was reduced in xylem sap from hypoxic roots. Leaf ABA transiently increased twofold after 24 hours of hypoxia exposure but there were no changes in leaf cytokinin levels.  相似文献   

3.
The objective of this study was to assess the relative rolesof leaf water status and root-sourced signals in mediating beanleaf responses to root hypoxia. To do so, the roots of beanplants under varied VPD (0.95 kPa to 0.25 KPa) were made hypoxic.Under all conditions, leaf growth rates and stomatal conductanceswere reduced. There was a transitory decline in leaf water potentialat high VPD which accounted for the initial reduction in leafgrowth rates and stomatal conductance. At low VPD, no waterdeficits were detected. Leaf growth inhibition and reduced stomatalconductance under low VPD treatments were unrelated to leafwater status and must be induced by some other factor. In vitrogrowth of leaf discs was reduced by xylem sap collected fromhypoxic roots. Exogenously applied ABA, at high concentrationsin KCl and sucrose, or at low concentrations diluted in xylemsap from aerated plants, inhibited in vitro growth of leaf discs.Applications of ABA in the transpiration stream reduced stomatalconductance.  相似文献   

4.
In order to investigate the effects of root hypoxia (1–2% oxygen) on the nitrogen (N) metabolism of tomato plants (Solanum lycopersicum L. cv. Micro-Tom), a range of N compounds and N-assimilating enzymes were performed on roots and leaves of plants submitted to root hypoxia at the second leaf stage for three weeks. Obtained results showed that root hypoxia led to a significant decrease in dry weight (DW) production and nitrate content in roots and leaves. Conversely, shoot to root DW ratio and nitrite content were significantly increased. Contrary to that in leaves, glutamine synthetase activity was significantly enhanced in roots. The activities of nitrate and nitrite reductase were enhanced in roots as well as leaves. The higher increase in the NH4+ content and in the protease activities in roots and leaves of hypoxically treated plants coincide with a greater decrease in soluble protein contents. Taken together, these results suggest that root hypoxia leaded to higher protein degradation. The hypoxia-induced increase in the aminating glutamate dehydrogenase activity may be considered as an alternative N assimilation pathway involved in detoxifying the NH4+, accumulated under hypoxic conditions. With respect to hypoxic stress, the distinct sensitivity of the enzymes involved in N assimilation is discussed.Key words: tomato, hypoxia, nitrogen, glutamine synthetase, protease, glutamate dehydrogenase  相似文献   

5.
The effects of root hypoxia on leaf growth of a Populus trichocarpa? deltoides hybrid have been assessed. Clonal plants were subjectedto hypoxic root conditions in pot culture by flooding and insolution culture by gassing with nitrogen. The rate of leafexpansion declined within 8 h and was suppressed for the durationof the treatment. Final leaf size was reduced by 35% to 60%compared to aerated plants. Final epidermal cell size and numberdepended both on the developmental stage of the leaf at theonset of stress and on the duration of the treatment. No differencesin bulk leaf water potential were measured between the hypoxicand aerated plants. Cell wall extensibility was lower, leafsolute potential was more negative and turgor potential washigher in leaves of hypoxia-treated plants than of aerated plants.These data suggest that leaf growth of hypoxia-stressed plantsis limited by cell wall extensibility. The mechanism by whichthe root stress induces changes in leaf cell wall characteristicsis not known. Key words: Populus, flooding  相似文献   

6.
The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.  相似文献   

7.
To investigate root respiration and carbohydrate status in relationto waterlogging or hypoxia tolerance, root respiration rateand concentrations of soluble sugars in leaves and roots weredetermined for two wheat (Triticum aestivum L.) genotypes differingin waterlogging-tolerance under hypoxia (5% O2) and subsequentresumption of full aeration. Root and shoot growth were reducedby hypoxia to a larger extent for waterlogging-sensitive Coker9835. Root respiration or oxygen consumption rate declined withhypoxia, but recovered after 7 d of resumption of aeration.Respiration rate was greater for sensitive Coker 9835 than fortolerant Jackson within 8 d after hypoxia. The concentrationsof sucrose, glucose and fructose decreased in leaves for bothgenotypes under hypoxia. The concentration of these sugars inroots, however, increased under hypoxia, to a greater degreefor Jackson. An increase in the ratio of root sugar concentrationto shoot sugar concentration was found for Jackson under hypoxicconditions, suggesting that a large amount of carbohydrate waspartitioned to roots under hypoxia. The results indicated thatroot carbohydrate supply was not a limiting factor for rootgrowth and respiration under hypoxia. Plant tolerance to waterloggingof hypoxia appeared to be associated with low root respirationor oxygen consumption rate and high sugar accumulation underhypoxic conditions.Copyright 1995, 1999 Academic Press Oxygen consumption rate, sugar accumulation, Triticum aestivum L., waterlogging tolerance  相似文献   

8.
Griselinia littoralis roots quickly and vigorously from cuttingsof seedlings and mature plants and also forms roots on detachedleaves. Cuttings root in the dark but leaves must be present.In contrast G. lucida roots vigorously only from cuttings takenfrom seedlings. Light is essential for root formation on oldermaterial. Detached leaves will not root. Although callus formationat the cut base commonly occurs in both species it is not directlyassociated with root formation. Griselinia littoralis Raoul Choix, Griselinia lucida Forst. f. Prodr., adventitious roots, stem cuttings, leaf cuttings, woody plants  相似文献   

9.
The role of roots in the enhancement of cytokinin content and leaf growth of Phaseolus vulgaris plants after decapitation and partial defoliation was investigated. Partial excision of the roots of plants which were decapitated above the primary leaf node resulted in a reduction of leaf growth and soluble proteins accumulation in the primary leaves. Roots excision was done at time of decapitation and repeated 8 days later. Endogenous cytokinins, known to be involved in enhancing shoot growth, accumulated in the leaves and stems of decapitated and partially defoliated plants. Lower levels of cytokinins were detected in the leaves of decapitated plants with only a partial root system. The level of cytokinins in the roots of decapitated plants was reduced by partial root excision. The growth and accumulation of cytokinins in leaves were, however, not totally suppressed by removing a large proportion of the roots. At the commencement of the experiment the stem had a higher cytokinin content than both the leaves and roots. This suggests that the stem could be an alternative source of cytokinins to the leaves. The cytokinin complement in the leaves of decapitated plants is not identical to that in the roots. It appears that cytokinins supplied by the roots are metabolized in the leaves, or that alternatively certain cytokinins are synthesized in the leaves themselves.  相似文献   

10.
Waterlogging tolerance, root porosity and root anatomy wereevaluated for 20 Trifolium accessions (species and sub-species,all annuals) selected from the eight Sections of the genus.Nine accessions were sensitive [relative growth rate (RGR) reducedby up to 80%] to waterlogging, nine accessions were tolerant(RGR not reduced), and in two accessions RGR increased (up to1.9-fold), when compared to drained controls. Growth of themain (i.e. tap) root axis was severely reduced in all accessionswhen waterlogged. Lateral roots formed the bulk of the rootsystem of tolerant accessions when grown in waterlogged soil.Lengths of the longest lateral roots were up to three-timeslonger than the main root axis. Root porosity varied from 0.7–12%among accessions when grown in aerated solution and from 1.1–15.5%in plants grown in hypoxic (0.031–0.045 mol O2m-3) solution.In some accessions aerenchyma formed by cell lysigeny; in othersit formed by schizogenous cell separation, or a combinationof both processes. O2consumption rates of expanded lateral roottissues varied by up to 1.7-fold (on a mass basis) among thesix accessions tested and was reduced by an average of 24% forroots of plants grown in hypoxic solution prior to measurements.Accessions with the highest root porosity tended to have longerroots when grown in waterlogged soil. Three accessions formed‘aerotropic roots’ and the lateral root lengthsof these plants exceeded those of all other accessions, suggestingenhanced O2movement to the submerged lateral root axis via theaerotropic roots. Waterlogging-tolerant accessions were identifiedin seven of the eight Sections in Trifolium, and the tolerantaccessions tended to be those with extensive lateral root systemsof relatively high porosity. Copyright 2001 Annals of BotanyCompany Waterlogging, Trifolium, aerenchyma, hypoxia, flooding, root respiration, clover, root anatomy, root porosity, pasture, aerotropic roots  相似文献   

11.
The natural cytokinin import from the root into the shoot of Urtica dioica plants was enhanced by supplying zeatin riboside (ZR) solutions of various concentrations to a portion less than 10 % of the root system after removal of their tips. After 6 h ZR pretreatment of the plants, 14CO2 was supplied for 3 h to a mature (source) leaf or to an expanding leaf and the 14C-distribution in the whole plant was determined after a subsequent dark period of 14 h. ZR substantially increased 14C fixation by the expanding leaves and also enhanced export of carbon and transport to the shoot apex. The effect of the hormone treatment was, however, more pronounced when the 14CO2 was supplied to a mature leaf. In the control plants these leaves exported carbon only to the roots: When the amount of the natural daily ZR input from the roots to the shoot was enhanced by 20%, the bulk of the 14C exported from a mature leaf moved to the shoot apex and only a minor portion of 14C was still detected in the root fraction. A several-fold increase of the natural daily ZR input into the shoot resulted in a flow of 14C only to the growing parts of the shoot. The results suggest control of the sink strength of the shoot apex by ZR in Urtica diocia.  相似文献   

12.
The growth of Atriplex amnicola, its water and ion relations,and carbohydrate use were investigated in response to the interactiveeffects of salinity and root zone hypoxia in an experiment conductedin nutrient culture. One week of hypoxia in the root zone atboth 50 and 400 mol m–3 NaCl caused the cessation of rootgrowth, a reduction in shoot growth, and adversely affectedwater relations, but not ion relations or carbohydrate concentrations.Two weeks of hypoxia at 400 mol m–3 NaCl resulted in thedeath of root tips, a 20–fold increase in the resistanceto water flow from the exterior of the roots to the leaves,and a further deterioration in water relations. There was alsoa doubling of Cl concentrations in the xylem sap anda doubling of Na+ and Cl concentrations in the leaves.An increase in the concentration of starch in the leaves, andsugars in the leaves, stems and roots, indicated that therewere problems with carbohydrate use rather than supply. Underthe prevailing conditions of low vapour pressure deficit, iontoxicity was the most probable cause of injury to A. amnicolain hypoxic solutions at high salinity. The response of A. amnicolato the interactive effects of salinity and hypoxia were similarto those reported for non-halophytes, but occurred at highersalinities. Key words: Atriplex, hypoxia, salinity, water relations, ion transport, carbohydrate  相似文献   

13.
Hemoglobin and Hypoxic Acclimation in Maize Root Tips   总被引:1,自引:0,他引:1  
Class 1 hemoglobins (Hbs) have a wide distribution in the plant kingdom and have been demonstrated in root, seed, stem, and leaf tissues. They are present at low concentrations in aerobic tissue, but their synthesis is rapidly induced by hypoxic stress. The pattern of expression of the maize Hb gene in roots of young maize plants exposed to hypoxia has been examined. Root Hb gene expression increased rapidly to a maximum within first two hours of hypoxia, then declining to prehypoxia levels within 48-h hypoxic exposure. Limiting oxygen supply to the roots by total plant immersion and darkness did not alter the time course of hemoglobin expression. Hb gene expression was about 20-fold higher in the stele than in the cortex of control, aerobically grown roots. Stele Hb expression increased about fourfold under hypoxic conditions, whereas its expression in the cortex increased about 60-fold. In these samples, alcohol dehydrogenase (Adh) gene expression increased about four- and ten fold in the stele and cortex, respectively. The effect of the state of the Hb on anoxic survival of maize root tips was assessed by exposing root tips to a carbon monoxide atmosphere to maximize the proportion of hemoglobin in the carbonmonoxy form. Carbon monoxide had no significant effect on the survival or the ATP levels in anoxic maize roots, regardless of whether they had been acclimated by exposure to a hypoxic pretreatment. This would suggest that the presence of oxyhemoglobin is not essential for the survival of anoxic root tips.  相似文献   

14.
Summary Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.  相似文献   

15.
Root cultures of Lotus corniculatus L. cv. Leo transformed withAgrobacterium rhizogenes (C58Cl-pRi15834) grew rapidly in liquidmedium when cultured in the dark and produced large numbersof shoots when illuminated. The shoots, which could be regeneratedto produce fertile plants, were maintained in liquid mediumas shoot-organ cultures The accumulation and cellular distribution of condensed tanninswas determined during the growth of these root and shoot organcultures and in primary callus from non-transformed explants.Root and shoot cultures predominantly accumulated insolublepolymeric tannins which yielded both cyanidin and delphinidinon hydrolysis at ratios equivalent to control plants. Methanol-solublevanillin-positive compounds were isolated but no free oligomericproanthocyanidins, monomeric flavans or dihydroflavonols weredetected in these extracts. Condensed tannin accumulation waslinearly related to root growth and had a similar spatial distributionin ‘tannin’ cells in roots and leaves as comparedto control plants. Tannin-containing cells were absent frommeristematic cells of the root tip and root/shoot interface.Primary callus cultures failed to accumulate condensed tanninson media containing auxins, and exogenously supplied auxinswere found to inhibit tannin accumulation by transformed rootand shoot cultures Key words: Lotus corniculatus, Agrobacterium rhizogenes, hairy roots, condensed tannins, shoot and root cultures.  相似文献   

16.
Root growth inhibition is a well-known symptom of aluminum (Al) toxicity in intact plants, mainly because the mechanisms of Al exclusion or resistance that operate outside the root endodermis prevent the ascent of this metal from roots into shoots. This work presents a new method to better understand the direct effects of this metal on rice leaves. For this, Al-sensitive and tolerant rice genotypes, having had their root apices removed, were incubated in AlCl3 solutions to evaluate unblocked metal ascension toward the leaf cells. To avoid regrowth and closing of roots, apices were removed daily and also verified for a lack of tyloses production and consequent obstruction in tracheal elements. Thus, seedlings of both cultivars, which were root apex-free, accumulated differentially high amounts of Al in the leaves, highlighting the importance of mechanisms of Al exclusion or resistance in roots of intact plants. Also, Al moved freely toward leaf cells, clearly inducing necrosis-like mesophyll alterations in both genotypes. Added ultrastructural analyses revealed significant cytoplasmatic damage, mainly in chloroplasts. These results suggest that differential responses to Al sensitivity/tolerance preserved in roots between the genotypes studied are also expressed in leaves. Therefore, this method allowed for development of a possible biological model suitable for investigating the direct effect of Al on cells and, alternatively, other compounds in plant leaf cell physiology.  相似文献   

17.
Effects of Root Zone Restriction on Amino Acid Status and Bean Plant Growth   总被引:1,自引:0,他引:1  
The possibility that the suppression of shoot growth in restrictedroot zone plants (RRZP) is caused by a deficiency in N-aminocompounds (NAC) in the shoot, possibly due to an insufficientsupply from the roots, was studied in bean (Phaseolus vulgarisL.). Root zone restriction to 10 cm3 in an aerated nutrientsolution resulted in suppressed plant growth, as compared withcontrol plants grown in a non-limiting root zone volume. Rootxylem exudation of solution and N-amino compunds (NAC) followingdecapitation was much greater in the control, as compared withRRZP, both per plant and per unit root fresh weight (FWT). Inboth treatments, asparagine comprised more than 52% of the NACfraction in the root xylem exudate (RE). Its reduced exudationin the RRZP was of a proportion similar to the combined fractionof NAC left over in both treatments. Asparagine accumulationin leaves of the control plants was very high, comprising 73%of the total NAC pool, while in RRZP, it was much smaller anddid not exceed 25%. The total NAC amount per unit of leaf FWTwas 3·3 times smaller for the RRZP, as compared withthe control, resulting mainly from the dramatic drop in asparagineaccumulation. In the roots, RRZP accumulated more NAC per unitroot FWT than the control. Raising both treatments in distilledwater reduced considerably the accumulation of NAC, includingasparagine, in their leaves. RRZP was relatively more suppressedby the absence of nutrients than control plants. This phenomenondid occur, despite the fact that NAC and asparagine concentrationsin the root and shoot of RRZP were greater than in the controlwhen grown in distilled water; Therefore, it was concluded thatroot zone restriction might affect the accumulation of NAC andasparagine in the leaves, but that deficiency in these compoundsis not the primary or the major cause of growth suppressionin RRZP. Key words: Root zone restriction, asparagine, amino-acids, Phaseolus vulgaris  相似文献   

18.
在水培条件下研究了生长素和细胞分裂素对两种基因型豌豆根系铁还原力的影响。结果表明,去顶,顶端涂抹NAA和茎基部涂抹CME都不影响豌豆根系铁还原力。茎尖,茎基部和根系的IAA、Z/ZR含量与根系铁还原力之间没有明显的相关性。  相似文献   

19.
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to biotic and abiotic stresses. We comparatively studied the growth and endogenous hormonal levels in leaves and roots in two Malus species (M. sieversii and M. hupehensis) differing in hypoxia tolerance under normoxic and hypoxia stress. The results showed that hypoxia stress inhibited growth of seedlings of both Malus species, but with significant differences in intensity. Exposure to hypoxia altered the levels of endogenous hormones in leaves and roots in both Malus seedlings. Leaf and root abscisic acid (ABA) contents increased in response to hypoxia stress in both genotypes despite different extents. Compared with M. hupehensis, M. sieversii was more responsive to hypoxia stress, resulting in larger increases in leaf and root ABA contents. The changes in leaf and root ABA contents correlating with the different tolerance levels of the genotypes confirm the involvement of this hormone in plant responses to hypoxia stress. Gibberellins (GAs; GA1 + GA4) continuously increased in leaves and roots during the whole period of stress, whereas indole-3-acetic acid (IAA) showed a sharp increase at the early stage in both Malus seedlings. In addition, zeatin riboside (ZR), dihydrozeatin riboside (DHZR), and isopentenyl adenine (IPA) differed in their pattern of changes in both Malus seedlings under hypoxia stress. Based on variations in endogenous hormonal levels in both Malus species that differ in their ability to tolerate hypoxia, we conclude that not a single hormone but multiple hormones and their interplay are responsible for hypoxia tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号