首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundnut, Arachis hypogea L., is one of the plant species that synthesizes phenolic compounds, resveratrol and coumaric acid. They are induced as a defense strategy in plant in response to feeding lepidopterans. The present study investigated the role of resveratrol and coumaric acid in producing antiherbivore effects as a direct defense against two major groundnut pests, Spodoptera litura F. and Amsacta albistriga W., and in indirect defense by attracting the egg parasitoid Trichogramma chilonis Ishii under laboratory conditions. The phenolic compounds deterred the feeding of both pests and caused reduction in the larval weights in a dose‐dependent manner in leaf disk bioassays. Antioxidant mechanisms of larvae fed with these phenols were measured by estimating the activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX), and catalase (CAT). Enzyme activities increased significantly in experimental larvae, more so in resveratrol‐treated than in coumaric acid treated larvae. Feeding larvae with resveratrol and coumaric acid resulted in enhanced activities of detoxifying enzymes, carboxyl esterase (EST), and glutathione‐S‐transferase (GST) in the midgut tissues of both species, indicating the toxic nature of these compounds. Trichogramma chilonis was more attracted toward coumaric acid treatments in Y‐olfactometer tests than to resveratrol. This study contributes to the understanding of the roles of resveratrol and coumaric acid in direct as well as indirect defense, we infer a possible utilization of these compounds in alternate measures of groundnut pest control in future.  相似文献   

2.
Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L). Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris) were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC50 = 637 µg ml−1). The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.  相似文献   

3.
BackgroundNatural defence of plants against insect pests involves protease inhibitors (PIs) that interfere with insect digestive proteases. Pin-II type plant PIs are wound inducible upon insect damage and possess multiple inhibitory repeat domains that can inhibit trypsin and chymotrypsin-like proteases in the insect midgut. Yet, their agricultural ex-vivo application is limited due to large molecular size and environmental instability, which could be overcome by small peptides.MethodsBicyclic peptides were designed by grafting Pin-II PIs derived reactive center loop (RCL) on synthetic tris(bromomethyl)benzene scaffold. In vitro binding with trypsin-like proteases was evaluated by biochemical and biophysical assays, followed by molecular dynamics simulations. In vivo effects on two major lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura were studied upon feeding with peptide treated leaves. Affinity based pull down assays were used to identify target proteins in insect gut.ResultsBicyclic RCLs showed ten-fold enhanced protease inhibition compared to their linear counterparts. They exhibited feeding deterrence and growth reduction of lepidopteran insects. Bicyclic peptides predominantly interact with midgut serine proteases. Possible binding modes involve simultaneous interaction with the active site and specificity-determining residues of insect gut trypsin.ConclusionBicyclic peptides are potent inhibitors of serine proteases in the insect midgut. They cause feeding aversion and larval growth retardation. Bi-domain cyclic peptides interact with two sites on trypsin, leading to enhanced efficacy over linear RCL peptides.General significanceBicyclic peptides mimic natural PIs by inhibiting insect proteases leading to growth reduction, thus, could be used as pest control molecules in agriculture.  相似文献   

4.
Many species belonging to the order Lepidoptera are major pests in agriculture and arboriculture. The sterile insect technique (SIT) is an eco-friendly and highly efficient genetically targeted pest management approach. In many cases, it is preferable to release only sterile males in an SIT program, and efficient sexing strategies are crucial to the successful large-scale implementation of SIT. In the present study, we established 160 transgenic silkworm (Bombyx mori) lines to test the possibility of genetic sexing using a W chromosome-linked transgene, which is thought to be the best sexing strategy for lepidopteran species. One transgenic line with a female-specific expression pattern of reporter gene was obtained. The expression level of the W-linked transgene was comparable with autosomal insertions and was stable for 17 continuous generations. Molecular characterization showed this line contained a single copy of the reporter gene on the W chromosome, and the integration site was TTAG in contig W-BAC-522N19-C9. The feasibility of using a W chromosome-linked transgene demonstrated here and the possible improvements discussed will provide valuable information for other lepidopteran pests. The novel W chromosome-linked transgenic line established in this study will serve as an important resource for fundamental research with the silkworm B. mori.  相似文献   

5.
Biochemical and enzymatic changes in rice plants as a mechanism of defense   总被引:1,自引:0,他引:1  
A laboratory study was undertaken to ascertain the impact and the extent of feeding by different pests on biochemical constituents and various enzyme levels in rice plants. The difference in these parameters due to the pest damage by three different modes of feeding was also studied and compared. The borer pest—yellow stem borer (YSB), Scirpophaga incertulas (W); surface feeder—-leaf roller (LR), Cnaphalocrosis medinalis (G) and a sucking pest—brown plant hopper (BPH), Nilaparvata lugens (S) fed rice plants were analyzed for the quantitative and qualitative changes in biochemical profile and enzymatic changes that occur as plant’s defensive responses were analyzed spectrophotometrically. The phenolic acids were analyzed using HPLC and quantitated with the standard samples. The quantity of biochemicals such as proteins, phenols and carbohydrates has been enhanced along with the enzyme activities of peroxidase (POD), catalase (CAT), chitinase (CHI). A decrease in superoxide dismutase (SOD), phenyl alanine ammonia lyase (PAL), β-1, 3-glucanase (GLU) enzyme activities were evident in pest infested plants. Phenolic acids like vanillic acid, syringic acid, cinnamic acid, and p-coumaric acids were mostly found in the infested plants. We demonstrate that the elevated levels of biochemicals, phenolic acids, and enzymes may play a major role in plant defense.  相似文献   

6.
Plants and insects have been coexisting for more than 350 million years. During this time, both have evolved many strategies to successfully exploit or respond to reciprocal adaptation and defense reactions. Plants tend to minimize the damage caused by pest feeding, while pests tend to manipulate plant response by suppressing plant defense mechanisms or developing strategies to overcome plant defense systems. Plants recognize insect pests by the wounding that they cause and elicitors present in pest oral secretions (saliva and/or regurgitant). These elicitors or insect-associated microorganisms can modulate plant response to the benefit of their insect hosts. In this article, we have undertaken an analysis of gene expression in serine and cysteine proteinase inhibitors (SerPI and CysPI, respectively) in wheat (Triticum aestivum) plants exposed to cereal leaf beetle (CLB, Oulema melanopus, Coleoptera, Chrysomelidae) larvae feeding, and the impact of microbes associated with CLB on the expression levels of these genes. Using three wheat varieties and antibiotic-treated and untreated CLB larvae, we found that SerPI plays a more important role than CysPIs in plant defense against CLB larvae. Additionally, higher levels of SerPI gene expression were observed in systemic leaves in comparison to the wounded leaves (local response). Each of the tested wheat varieties reacted in a specific way to the particular treatment. Moreover, the presence of microbial components associated with insects influenced plant response to CLB larvae feeding.  相似文献   

7.
In order to find novel strains of Bacillus thuringiensis that are toxic to some of the major pests that impact economically important crops in Argentina, we initiated a search for B. thuringiensis isolates native to Argentina. We succeeded in assembling a collection of 41 isolates, some of which show a high potential to be used in biological control programs against lepidopteran and coleopteran pests. About 90% of the strains showed toxicity against Spodoptera frugiperda and Anticarsia gemmatalis, two important lepidopteran pests in Argentina. It is noteworthy that only one of these strains contained a cry1-type gene, while another isolate showed a dual toxicity against the lepidopteran and coleopteran insects assayed. Genetic characterization of the strains suggests that the collection likely harbors novel Cry proteins that may be of potential use in biological insect pest control.  相似文献   

8.
9.
A vegetative insecticidal protein (VIP)-encoding gene from a local isolate of Bacillus thuringiensis has been cloned, sequenced, and expressed in Escherichia coli. The expressed protein shows insecticidal activity against several lepidopteran pests but is ineffective against Agrotis ipsilon. Comparison of the amino acid sequence with those of reported VIPs revealed a few differences. Analysis of insecticidal activity with N- and C-terminus deletion mutants suggests a differential mode of action of VIP against different pests.  相似文献   

10.
11.
茉莉酸对棉花单宁含量和抗虫相关酶活性的诱导效应   总被引:4,自引:0,他引:4  
杨世勇  王蒙蒙  谢建春 《生态学报》2013,33(5):1615-1625
以植物生长调节物茉莉酸(Jasmonic acid,JA)为诱导子,以常规棉为研究对象,探讨了外源茉莉酸对棉花幼苗单宁和蛋白酶抑制素以及其它抗虫相关酶活性诱导的浓度依赖性和持久性,讨论了棉花抗虫相关物质的抗虫效果.结果表明,0.01、0.1和1.0 mmol/L茉莉酸都能在2周内诱导棉花单宁和胰蛋白酶抑制素(Proteinase inhibitors,PIs)含量增加,诱导多酚氧化酶(Polyphenol oxidase,PPO)、苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)活性升高.对3种浓度茉莉酸的诱导效应进行分析表明,0.1 mmol/L茉莉酸对于诱导PIs、PPO、POD和CAT最有效,0.1和1.0 mmol/L茉莉酸对于诱导棉花单宁和苯丙氨酸解氨酶等效,二者的诱导效应均高于0.01 mmol/L.对茉莉酸诱导抗性的持久性进行分析表明,最佳诱导效应发生的时间各不相同:POD活性在JA处理后第1天最高,随后呈下降趋势,PIs和单宁含量分别在JA处理后第7天和第14天达最大值;JA处理后第1天和第7天的PPO活性无明显差异,但明显高于第14天;JA处理后第7天和第14天的PAL活性无明显差异,但明显高于第1天;JA处理后第1、7和14天棉花叶片的CAT活性均无明显差异.以上结果表明,茉莉酸可通过增加棉叶单宁和PIs含量、提高棉叶PAL、PPO、POD和CAT活性等增强棉花幼苗的抗虫性.  相似文献   

12.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

13.
Induced defense was studied in three groundnut genotypes ICGV 86699 (resistant), NCAc 343 (resistant) and TMV 2 (susceptible) in response to Spodoptera litura infestation and jasmonic acid (JA) application. The activity of the oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72 and 96 h in JA pretreated (one day before) plants and infested with S. litura, and JA application and simultaneous infestation with S. litura to understand the defense response of groundnut genotypes against S. litura damage. Data on plant damage, larval survival and larval weights were also recorded. There was a rapid increase in the activities of POD and PPO and in the quantities of total phenols, H2O2, MDA and protein content in the JA pretreated + S. litura infested plants. All the three genotypes showed quick response to JA application and S. litura infestation by increasing the defensive compounds. Among all the genotypes, higher induction was recorded in ICGV 86699 in most of the parameters. Reduced plant damage, low larval survival and larval weights were observed in JA pretreated plants. It suggests that pretreatment with elicitors, such as JA could provide more opportunity for plant defense against herbivores.  相似文献   

14.
Cotton is one of the most economically important crops in China, while insect pest damage is the major restriction factor for cotton production. The strategy of integrated pest management (IPM), in which biological control plays an important role, has been widely applied. Nearly 500 species of natural enemies have been reported in cotton systems in China, but few species have been examined closely. Seventy-six species, belonging to 53 genera, of major arthropod predators and parasitoids of lepidoptera pests, and 46 species, belonging to 29 genera, of natural enemies of sucking pests have been described. In addition, microsporidia, fungi, bacteria and viruses are also important natural enemies of cotton pests. Trichogramma spp., Microplitis mediator, Amblyseius cucumeris, Bacillus thuringiensis and Helicoverpa armigera nuclear polyhedrosis virus (HaNPV) have been mass reared or commercially produced and used in China. IPM strategies for cotton pests comprising of cultural, biological, physical and chemical controls have been developed and implemented in the Yellow River Region (YRR), Changjiang River Region (CRR) and Northwestern Region (NR) of China over the past several decades. In recent years, Bt cotton has been widely planted for selectively combating cotton bollworm, H. armigera, pink bollworm, Pectinophora gossypiella, and other lepidopteran pest species. As a result of reduced insecticide sprays, increased abundance of natural enemies in Bt cotton fields efficiently prevents outbreaks of other pests such as cotton aphids. In contrast, populations of mirid plant bugs have increased dramatically due to a reduction in the number of foliar insecticide applications for control of the bollworms in Bt cotton, and now pose a key problem in cotton production. In response to this new pest issue in cotton production, control strategies including biological control measures are being developed in China.  相似文献   

15.
Ecological hypotheses of plant–insect herbivore interactions suggest that insects perform better on weakened plants and plants grown under optimal conditions are less damaged. This study tested the hypothesis that the colonization and oviposition rates by pests with different feeding strategies and levels of specialization are affected in different ways by two conditions commonly faced by commercially grown plants–water deficit and application of kaolin sprays, a reducer of abiotic plant stressors. We used four major pests of cotton as insect herbivore models. Three were chewing Lepidoptera: Alabama argillacea (Hüb.), a monophagous pest on cotton; Heliothis virescens (Fabr.), which is polyphagous, but with cotton as a primary host; and Chrysodeixis includens (Walk.), which is polyphagous, with cotton as secondary host. The fourth pest was a sap-sucking species, the polyphagous whitefly Bemisia tabaci (Gen.). In both choice and no-choice trials, the three chewing pests oviposited significantly less upon water-stressed plants; the greatest effect was observed for C. includens (>90 % reduction in oviposition under choice and >58 % under no-choice conditions). In contrast, the sap-sucking B. tabaci exhibited statistically more colonization and oviposition on water-stressed plants. Application of kaolin sprays reduced colonization and oviposition by all herbivore species tested, irrespective of irrigation regime and feeding strategies.  相似文献   

16.
Two transgenic rice lines (T2A‐1 and T1C‐19b) expressing cry2A and cry1C genes, respectively, were developed in China, targeting lepidopteran pests including Chilo suppressalis (Walker) (Lepidoptera: Crambidae). The seasonal expression of Cry proteins in different tissues of the rice lines and their resistance to C. suppressalis were assessed in comparison to a Bt rice line expressing a cry1Ab/Ac fusion gene, Huahui 1, which has been granted a biosafety certificate. In general, levels of Cry proteins were T2A‐1 > Huahui 1 > T1C‐19b among rice lines, and leaf > stem > root among rice tissues. The expression patterns of Cry protein in the rice line plants were similar: higher level at early stages than at later stages with an exception that high Cry1C level in T1C‐19b stems at the maturing stage. The bioassay results revealed that the three transgenic rice lines exhibited significantly high resistance against C. suppressalis larvae throughout the rice growing season. According to Cry protein levels in rice tissues, the raw and corrected mortalities of C. suppressalis caused by each Bt rice line were the highest in the seedling and declined through the jointing stage with an exception for T1C‐19b providing an excellent performance at the maturing stage. By comparison, T1C‐19b exhibited more stable and greater resistance to C. suppressalis larvae than T2A‐1, being close to Huahui 1. The results suggest cry1C is an ideal Bt gene for plant transformation for lepidopteran pest control, and T1C‐19b is a promising Bt rice line for commercial use for tolerating lepidopteran rice pests.  相似文献   

17.
Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode’s symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.  相似文献   

18.
19.
Induced resistance is one of the important components of host plant resistance to insects. We studied the induced defensive responses in groundnut genotypes with different levels of resistance to the leaf defoliator Helicoverpa armigera and the sap-sucking insect Aphis craccivora to gain an understanding of the induced resistance to insects and its implications for pest management. The activity of the defensive enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, superoxide dismutase, ascorbate peroxidase, and catalase) and the amounts of total phenols, hydrogen peroxide, malondialdehyde, and proteins were recorded at 6 days after infestation. Induction of enzyme activities and the amounts of secondary metabolites were greater in the insect-resistant genotypes ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697 infested with H. armigera and A. craccivora than in the susceptible check JL 24. The resistant genotypes suffered lower insect damage and resulted in lower Helicoverpa larval survival and weights than those larvae fed on the susceptible check JL 24. The number of aphids was significantly lower on insect-resistant genotypes than on the susceptible check JL 24. The results suggested that groundnut plants respond to infestation by H. armigera and A. craccivora in a similar way; however, the degree of the response differed across the genotypes and insects, and this defense response is attributed to various defensive enzymes and secondary metabolites.  相似文献   

20.
以Bt水稻华恢1号(Cry1Ac和CryAb融合基因;简称HH1)及其对照亲本明恢63(简称MH63)稻田靶标害虫二化螟Chilosuppressalis和次靶标害虫大螟Sesamia inferens为研究对象,研究了转基因抗虫水稻大田螟虫发生规律及其靶标和次靶标害虫致害力差异。结果表明,Bt水稻及其对照亲本上二化螟或大螟的卵块数量差异不显著,同时,对照亲本上二化螟与大螟的落卵量差异不显著,但Bt水稻上二化螟的落卵量显著大于大螟。与对照亲本相比,Bt水稻上二化螟幼虫发生量显著降低,降幅高达84.9%—100%,但大螟发生量差异不显著;此外,对照亲本上二化螟幼虫发生量显著高于大螟,但Bt水稻上两者差异不显著。同时,Bt水稻上二化螟导致的枯心/白穗率和受害丛率都显著低于其在对照亲本上的致害程度,降幅分别为30.8%—98.3%和11.4%—96.6%,而大螟差异不显著。可见,Bt水稻对靶标害虫二化螟具有较高抗性,而对次靶标害虫大螟的抗性不明显。另一方面,Bt水稻和对照亲本上二化螟导致的枯心/白穗率和受害从率都显著高于大螟。可见,二化螟仍是当前非转基因水稻上的主要害虫,而Bt水稻对二化螟幼虫发生的显著抑制作用以及对大螟幼虫发生的不显著影响,使得其大面积商业化种植下靶标害虫二化螟和次靶标害虫大螟间的竞争替代成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号