首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent data (2006–2008) on characteristics of the vegetation and soils of the solonetzic complex in areas with tree failures within the Volgograd-Elista-Cherkessk forest shelterbelt have been compared with those obtained prior to afforestation (1950). The results show that the vegetation and soils have changed profoundly. Solonetzic agrozems in tree failure sites have been occupied by herbaceous plant communities similar in composition to natural communities. Anthropogenically altered soils formed under forest plantations have no natural analogs. The initial strongly saline shallow (crusty) solonetz soils with a chloride-sulfate or sulfate-chloride composition of salts have transformed into slightly saline solonetzic and solonchakous agrozems with sodium sulfate salinity or with increased alkalinity in the middle of the soil profile and a dealkalized arable horizon.  相似文献   

2.
研究了不同砍伐频率下,香港、深圳和鹤山研究样地山坡地N、P、K含量的差异.不同采样地之间,养分全量和有效量差异显著.在尚未砍伐的山坡地,土壤养分含量显著高于经常砍伐的山坡地.未伐土壤的N含量顺序为香港样地>深圳样地>鹤山样地.下层土壤P的含量高于上层土壤.深圳样地常代土壤养分含量高于鹤山.结果建议采用最适砍伐频率和在最适季节砍伐,以便减少砍伐产生的不利影响.  相似文献   

3.
基于电磁感应成像植被斑块土壤水盐效应研究   总被引:3,自引:1,他引:2  
土壤水盐过程在植被斑块的形成与演变中起着十分关键的作用,但其与植被斑块间的相互作用关系因研究工具的限制而缺乏深入认识。以青海湖流域芨芨草斑块群落为研究对象,通过采用电磁感应(EMI)产生的表观电导率(ECa)成像解译土壤水分与盐分的时空动态变化,建立芨芨草斑块分布格局与土壤水盐变化过程之间的联系。结果表明:ECa分别与土壤水分、盐分间存在显著相关关系(P0.01),多元回归模型指出,ECa变化的81%可由土壤水分与盐分变化来解释,因此可用ECa变化表征土壤水分与盐分的变化;此外,强降雨事件前后ECa动态变化图指出,芨芨草斑块处土壤水分增加量高于基质区,说明芨芨草斑块能够快速聚集水分;而不论干湿状态或不同季节,芨芨草斑块处土壤水盐含量总是高于基质区,表现出时间稳定性,说明芨芨草斑块是土壤水盐的聚集区。因此,EMI成像可揭示芨芨草斑块土壤水盐空间分布及动态变化过程,为植被斑块的水文过程研究提供快速可靠的方法。  相似文献   

4.
Background: Knowledge about vegetation and soil seed bank composition and the processes that contribute to vegetation recovery after the removal of heavy grazing is lacking in sub-alpine ecosystems.

Aims: In order to assess the effects of large herbivores on above-ground vegetation (AGV) and soil seed bank (SSB) characteristics, intensively sheep-grazed areas were compared to adjacent areas where grazing had been removed 10 years previously in a sub-alpine grassland of northern Iran.

Methods: A total of 40 4-m2 (2 m × 2 m) plots were established in each treatment, and soil samples were collected from each plot within a depth of 10 cm. Plant species composition was determined for each plot during the flowering stage of herbaceous species in June 2011. The seedling emergence method was used to estimate SSB composition.

Results: A total of 45 species (23 annuals and 22 perennials) emerged from the soil samples of the grazed area, while the number of species emerged from the soil samples of the previously grazing area was 76 (37 annuals and 39 perennials). The removal of grazing led to a significant increase in species richness and seed density in the SSB. Species turnover of AGV was higher, and that of the SSB was similar for grazed areas compared with areas that were formerly grazed. Detrended correspondence analysis ordination of AGV composition showed a clearly separate structure between grazed plots and plots where grazing has been removed, while the segregation was less clear for SSB composition.

Conclusions: We concluded that restoration of locally degraded sites cannot rely on the SSB when grazing is stopped simultaneously and unvegetated gaps are colonised by vegetative growth rather than by seed.  相似文献   


5.
To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Aboveground biomass at G-sites was 21–35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68–82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.  相似文献   

6.
Laboratory experiments were performed on four different soils, using 100 cm long columns, to determine the extent of virus movement when wastewater percolated through the soils at various hydraulic flow rates. Unchlorinated secondary sewage effluent seeded with either poliovirus type 1 (strain LSc) or echovirus type 1 (isolate V239) was continuously applied to soil columns for 3 to 4 days at constant flow rates. Water samples were extracted daily from ceramic samplers at various depths of the column for the virus assay. The effectiveness of virus removal from wastewater varied greatly among the different soil types but appeared to be largely related to hydraulic flow rates. At a flow rate of 33 cm/day, Anthony sandy loam removed 99% of seeded poliovirus within the first 7 cm of the column. At flow rates of 300 cm/day and above, Rubicon sand gave the poorest removal of viruses; less than 90% of the seeded viruses were removed by passage of effluent through the entire length of the soil column. By linear regression analyses, the rate of virus removal in soil columns was found to be negatively correlated with the flow of the percolating sewage effluent. There was no significant difference in rate of removal between poliovirus and echovirus in soil columns 87 cm long. The rate of virus removal in the upper 17 cm of the soil column was found to be significantly greater than in the lower depths of the soil column. This study suggests that the flow rate of water through the soil may be the most important factor in predicting the potential of virus movement into the groundwater. Furthermore, the length of the soil column is critical in obtaining useful data to predict virus movement into groundwater.  相似文献   

7.
刈割对植被组成及土壤有关性质的影响   总被引:8,自引:4,他引:8  
在红壤地区生长良好的自然植被(白茅)条件下设计了不同的刈割期试验,结果表明,每次刈割时的生物量以6年刈割1次处理最高,而以1年刈割1次处理最低,但6年累计生物量则以1年刈割1次处理最高,每块样地达399.1kg;各处理木本植物与草本植物生物量的比例亦与刈割期长短有关,至试验第6年时,6年刈割1次自理中木本植物生物量所占比例达41.5%,而每年刈割1次自理草本植物生物量占总生物量的99.0%;  相似文献   

8.
在红壤地区生长良好的自然植被(白茅)条件下设计了不同的刈割期试验,结果表明,每次刈割时的生物量以6年刈割1次处理最高,而以1年刈割1次处理最低,但6年累计生物量则以1年刈割1次处理最高,每块样地达399.1kg;各处理木本植物与草本植物生物量的比例亦与刈割期长短有关,至试验第6年时,6年刈割1次处理中木本植物生物量所占比例达41.5%,而每年刈割1次处理草本植物生物量占总生物量的99.0%;再次,刈割期的长短还影响土壤剖面的层次发育及有关理化性质的变化,6年刈割1次处理土壤容重较小,有机质和N、P、K含量较高,而1年刈割1次处理则土壤容重较大,有机质和N、P、K含量较低.  相似文献   

9.
Effect of soil permeability on virus removal through soil columns.   总被引:2,自引:2,他引:0       下载免费PDF全文
Laboratory experiments were performed on four different soils, using 100 cm long columns, to determine the extent of virus movement when wastewater percolated through the soils at various hydraulic flow rates. Unchlorinated secondary sewage effluent seeded with either poliovirus type 1 (strain LSc) or echovirus type 1 (isolate V239) was continuously applied to soil columns for 3 to 4 days at constant flow rates. Water samples were extracted daily from ceramic samplers at various depths of the column for the virus assay. The effectiveness of virus removal from wastewater varied greatly among the different soil types but appeared to be largely related to hydraulic flow rates. At a flow rate of 33 cm/day, Anthony sandy loam removed 99% of seeded poliovirus within the first 7 cm of the column. At flow rates of 300 cm/day and above, Rubicon sand gave the poorest removal of viruses; less than 90% of the seeded viruses were removed by passage of effluent through the entire length of the soil column. By linear regression analyses, the rate of virus removal in soil columns was found to be negatively correlated with the flow of the percolating sewage effluent. There was no significant difference in rate of removal between poliovirus and echovirus in soil columns 87 cm long. The rate of virus removal in the upper 17 cm of the soil column was found to be significantly greater than in the lower depths of the soil column. This study suggests that the flow rate of water through the soil may be the most important factor in predicting the potential of virus movement into the groundwater. Furthermore, the length of the soil column is critical in obtaining useful data to predict virus movement into groundwater.  相似文献   

10.
植被对土壤微生物群落结构的影响   总被引:57,自引:6,他引:57  
研究了不同土壤及覆盖其上的植被与土壤微生物群落结构和多样性的关系.植被使土壤中的微生物种类更丰富,群落多样性更高.表层土壤微生物群落中没有明显的优势种群,种间竞争作用较弱.并介绍了研究土壤微生物群落的分子生物学方法.  相似文献   

11.
Hordeum geniculatum is considered as an obligate halophyte, but exact data about ecological requirements of the species are lacking. Therefore, species response curves of H. geniculatum were obtained for soil reaction and nutrients using Borhidi's indicator values and LOESS smoother response model in the programme CANOCO. Our data showed that H. geniculatum can be regarded as an obligate halophyte preferring slightly to moderately saline soils with relatively high content of nutrients. The Hordeetum hystricis association, indicating grazed vegetation on salt-rich soils, is a plant community that occurs only in central and southeastern Europe. Because this plant community has only been documented in a relatively small area, details about its vegetation ecology are inaccurate. Therefore, the ecology and species composition of this community were studied in three countries within the Pannonian Basin (Hungary, Serbia and Slovakia). A detrended correspondence analysis of 95 relevés from the Pannonian Basin confirmed that the community is characterised by the cover of H. geniculatum above 25%, which may even reach 75%. The association was species-rich; we sampled 91 taxa in 95 relevés. The widespread presence of many accessory species was dependent on environmental conditions, particularly the nutrient and salt content and animal disturbance.  相似文献   

12.
13.
14.
不同植被对土壤侵蚀和氮素流失的影响   总被引:63,自引:4,他引:63  
利用 5~ 6a野外径流小区试验资料 ,研究 1 7种植被覆盖对土壤侵蚀和氮素流失的影响 ,结果表明 :1 9种作物、4种草地和 4种草灌间作小区年平均径流量为 2 7773、1 80 2 8和 1 31 4 9m3/ km2 · a,比相应裸地减少 2 7.5%、51 .1 %和64.3% ;侵蚀模数为 1 71 6、1 0 2 1和 81 2 t/ km2 · a,减少 73.0 %、92 .8%和 94 .3% ;全氮富集率为 1 .65、2 .4 8和 2 .59,比裸地增加 1 3.8%~ 1 1 4 % ;年平均土壤氮素流失量为 1 4 58、1 2 52、382 9和 966kg/ km2· a。 2植被通过调节径流流速来间接影响泥沙全氮富集 ,土壤侵蚀模数愈大 ,泥沙全氮富集率愈小。 3土壤氮素流失方程 SN=( 55.56-4 .87ln SL)· SL·TN ,可定量预测土壤氮素的流失。  相似文献   

15.
Abstract. The North American mid‐continent population of Lesser snow geese (Chen caerulescens caerulescens L.) has increased by ca. 7% per year, largely as a result of geese feeding on agricultural crops in winter and on migration. We describe the long‐term effects of increasing numbers of geese at an arctic breeding ground (La Pérouse Bay, Manitoba) on intertidal salt‐marsh vegetation. Between 1985 and 1999 goose grubbing caused considerable loss of graminoid vegetation along transects in intertidal marshes. Loss of vegetation led to bare sediment with a plant cover of less than 2%. Changes in vegetation could not be described by simple linear, geometric or exponential functions; most losses occurred between 1988 and 1990 and losses were staggered in time between individual transects, some of which had all vegetation removed. Between 1979 and 1999 the standing crop in July in remaining intact heavily‐grazed swards of Puccinellia phry‐ganodes and Carex subspathacea fell from 40–60 g m‐2 to 20–30 g m‐2. Intense grazing on remaining patches of sward has restricted growth of these clonal forage plants and hypersalinity of bare sediments has precluded re‐establishment of vegetation. Between 1989 and 1993 numbers of faecal droppings in grazed plots reached maximum values of 15–22 droppings m‐2 wk‐1. Since then peak values have remained at less than 13 droppings m‐2 wk‐1. The loss of vegetation and changes in soil conditions have resulted in the establishment of an alternative stable state (hypersaline bare sediment).  相似文献   

16.
Eighty soil samples, from the depth of 0–8 cm, taken at random within eight stands of homogeneous salt meadow vegetation along the shores of the Baltic in Denmark, were analysed for bulk density, content of organic matter, actual water content, pH, and for soluble salts, expressed by specific conductivity and waterextractable Na, K, Ca and Mg. For each stand and soil parameter the horizontal soil variability was expressed by the coefficient of variation. It was found, that the variability was higher in the upper than in the lower geolittoral stands, and that it was higher in the soil soluble salts than in the physical soil parameters. Differences in the ratios between the actual values of the individual soil parameters, expressed by co–variance, were found to be a further aspect of soil variability within the stands. The relationships between number of samples, coefficient of variation and analysis precision were discussed.  相似文献   

17.
18.
宋丽丽  白中科  樊翔  孙鹏旸  卫怡 《生态学报》2018,38(4):1272-1283
植被覆盖度测度的准确性很大程度上影响着研究结论是否科学合理。在干旱半干旱退化草原区,尤其是受采矿剧烈扰动的矿区,发育的生物土壤结皮(Biological soil crust,BSC)由于其颜色和光谱同绿色植被具有相似性,导致对植被覆盖度的测量存在一定的影响。以伊敏露天矿区为研究区,在西排土场和内排土场采集了含苔藓结皮、地衣结皮和藻结皮的样方相片各四组(每组中包含样方喷水前和喷水后的相片各一张),并采集了一组不含结皮的样方相片作为对照组,运用数码照相法提取植被覆盖度,通过不同的数据处理方法(最大似然分类法及RGB阈值法)进行植被覆盖度提取,设立对比试验,分析BSC对于植被覆盖度测度是否有影响,其影响大小如何,影响程度是否受BSC含水量大小的影响,并对比各常规处理方法的优劣,研究能否通过结合纹理特征与色彩信息剔除BSC对植被覆盖度提取值的影响。研究结论:1)基于照相法的常规数据处理方法提取植被覆盖度时,BSC的存在导致测得的植被覆盖度值偏高,且苔藓结皮、地衣结皮吸水后比吸水前影响更显著,藻结皮相反;2)3个演替阶段的BSC中,尤以含苔藓结皮的样方植被覆盖度高估最为明显,其次为地衣,而含藻结皮样方规律不明显;3)样方内BSC覆盖度越高,植被覆盖度越低,其植被覆盖度测度越不准确,因此在研究草原矿区这类草本植物覆盖度较低、结皮发育的区域时,应当注意BSC的影响;4)试通过应用纹理信息提出改进的提取方法,发现单纯的纹理分类精度极低,而结合了纹理信息与RGB色彩信息的分类精度较高;5)对两种常规分类方法的精度进行比较,RGB阈值法较最大似然分类法更为不准确,对植被覆盖度的高估接近最大似然分类法的2倍。对两种改进的提取方法的精度进行比较,二者都可以有效提高测量精度,基于波段合成的纹理分类方法最佳。四种方法精度由高到低的顺序为:纹理结合RGB法考虑生物土壤结皮的最大似然分类法普通最大似然分类法RGB阈值法。  相似文献   

19.
Riparian zones provide critically important ecological functions, including the interception of nutrients and sediments before they enter waterways. Consequently, riparian zones, and the vegetation they support, are often considered as an important ‘final buffer’ between waterways and adjacent land. In agricultural ecosystems, riparian zones are therefore increasingly recognized as an important component of strategies aimed at minimizing the flow of nutrients and sediments into waterways. Accordingly, riparian zones are increasingly afforded protection and are targeted for restoration. Here we present results of a study in which we aimed to identify patterns of change in soil and vegetation properties in riparian zones, under different management regimes, adjacent to tributary streams in one of south‐eastern Australia's main agricultural regions. We compared riparia that were heavily impacted by agricultural activities, were in remnant condition or had undergone some restoration activities and were thus in a transitional state. There was an increase in plant cover and soil C concentration between impacted through to remnant sites, with transitional sites intermediate, suggesting that improvements in soil conditions were becoming evident following restoration activities. In our assessment of soil physicochemical properties we investigated the relationships between riparian condition and soil properties, taking into account the influence of adjacent land use on these relationships. Importantly, the concentrations of NO3 and plant available P in riparian surface soils were more or less influenced by concentrations in the adjacent land depending upon riparian condition. This will, in turn, have consequences for nutrient inputs into streams. This study emphasizes that riparian zones need to be managed within their wider landscape context. Furthermore, the results of this study will inform efforts seeking to minimize impacts of agricultural activities on waterways, through the conservation and/or restoration of riparian ecosystems.  相似文献   

20.
Water is the most important factor controlling plant growth, primary production, and ecosystem stability in arid and semi-arid grasslands. Here we conducted a 2-year field study to explore the contribution of winter half-year (i.e. October through April) and summer precipitation (May through September) to the growth of coexisting plant species in typical steppe ecosystems of Inner Mongolia, China. Hydrogen stable isotope ratios of soil water and stem water of dominant plant species, soil moisture, and plant water potential were measured at three steppe communities dominated by Stipa grandis, Caragana microphylla, and Leymus chinensis, respectively. The fraction of water from winter half-year precipitation was an important water source, contributing 45% to plant total water uptake in a dry summer after a wet winter period (2005) and 15% in a summer where subsoil moisture had been exploited in the previous year (2006). At species level, Caragana microphylla exhibited a complete access to deep soil water, which is recharged by winter precipitation, while Cleistogenes squarrosa completely depended on summer rains. Leymus chinensis, Agropyron cristatum, and Stipa grandis showed a resource-dependent water use strategy, utilizing deep soil water when it was well available and shifting to rain water when subsoil water had been exploited. Our findings indicate that differentiation of water sources among plants improves use of available soil water and lessens the interspecific competition for water in these semi-arid ecosystems. The niche complementarity in water sources among coexisting species is likely to be the potential mechanism for high diversity communities with both high productivity and high resilience to droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号