首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable friction tactile displays have been recently used to render virtual textures and gratings. Neural basis of perceptual mechanism of detection of edge-like features resulting in discrimination of virtual gratings during active touching these tactile actuators is studied using a finite-element biomechanical model of human fingertip. The predicted neural response of the mechanoreceptors, i.e. the computed strain energy density at the location of selected mechanoreceptors as a measure of neural discharge rate of the corresponding receptors, to local reduction of friction between fingerpad and surface are shown to exhibit a similar shape as the edge enhancement phenomenon, particularly in a sudden burst at the boundary of variable friction regions. This phenomenon is supposed to account for the illusion of virtual edges rendered through the modification of contact forces. The presence of this sudden burst under varied model parameters was investigated. It was shown that while the appearance of this phenomenon in simulation results was invariant to model parameters, associated alteration of the edge enhancement ratio might be considered for the purpose of the tuning of the variable friction tactile display.  相似文献   

2.
This paper investigates the dynamic, distributed pressure response of the human fingerpad in vivo when it first makes contact with an object. A flat probe was indented against the fingerpad at a 20 to 40 degree angle. Ramp-and-hold and sinusoidal displacement trajectories were applied to the fingerpad within a force range of 0-2 N. The dynamic spatial distribution of the pressure response was measured using a tactile array sensor. Both the local pressure variation and the total force exhibited nonlinear stiffness (exponential with displacement) and significant temporal relaxation. The shape of the contact pressure distribution could plausibly be described by an inverted paraboloid. A model based on the contact of a rigid plane (the object) and a linear viscoelastic sphere (the fingerpad), modified to include a nonlinear modulus of elasticity, can account for the principal features of the distributed pressure response.  相似文献   

3.
Invariant representations of stimulus features are thought to play an important role in producing stable percepts of objects. In the present study, we assess the invariance of neural representations of tactile motion direction with respect to other stimulus properties. To this end, we record the responses evoked in individual neurons in somatosensory cortex of primates, including areas 3b, 1, and 2, by three types of motion stimuli, namely scanned bars and dot patterns, and random dot displays, presented to the fingertips of macaque monkeys. We identify a population of neurons in area 1 that is highly sensitive to the direction of stimulus motion and whose motion signals are invariant across stimulus types and conditions. The motion signals conveyed by individual neurons in area 1 can account for the ability of human observers to discriminate the direction of motion of these stimuli, as measured in paired psychophysical experiments. We conclude that area 1 contains a robust representation of motion and discuss similarities in the neural mechanisms of visual and tactile motion processing.  相似文献   

4.
The biomechanics of skin and underlying tissues plays a fundamental role in the human sense of touch. It governs the mechanics of contact between the skin and an object, the transmission of the mechanical signals through the skin, and their transduction into neural signals by the mechanoreceptors. To better understand the mechanics of touch, it is necessary to establish quantitative relationships between the loads imposed on the skin by an object, the state of stresses/strains at mechanoreceptor locations, and the resulting neural response. Towards this goal, 3-D finite-element models of human and monkey fingertips with realistic external geometries were developed. By computing fingertip model deformations under line loads, it was shown that a multi-layered model was necessary to match previously obtained in vivo data on skin surface displacements. An optimal ratio of elastic moduli of the layers was determined through numerical experiments whose results were matched with empirical data. Numerical values of the elastic moduli of the skin layers were obtained by matching computed results with empirically determined force-displacement relationships for a variety of indentors. Finally, as an example of the relevance of the model to the study of tactile neural response, the multilayered 3-D finite-element model was shown to be able to predict the responses of the slowly adapting type I (SA-I) mechanoreceptors to indentations by complex object shapes.  相似文献   

5.
Pei YC  Hsiao SS  Craig JC  Bensmaia SJ 《Neuron》2011,69(3):536-547
How are local motion signals integrated to form a global motion percept? We investigate the neural mechanisms of tactile motion integration by presenting tactile gratings and plaids to the fingertips of monkeys, using the tactile analogue of a visual monitor and recording the responses evoked in somatosensory cortical neurons. The perceived directions of the gratings and plaids are measured in parallel psychophysical experiments. We identify a population of somatosensory neurons that exhibit integration properties comparable to those induced by analogous visual stimuli in area MT and find that these neural responses account for the perceived direction of the stimuli across all stimulus conditions tested. The preferred direction of the neurons and the perceived direction of the stimuli can be predicted from the weighted average of the directions of the individual stimulus features, highlighting that the somatosensory system implements a vector average mechanism to compute tactile motion direction that bears striking similarities to its visual counterpart.  相似文献   

6.
The siphon withdrawal response evoked by a weak tactile (water drop) or light stimulus is mediated primarily by neurons in the siphon. Central neurons (abdominal ganglion) contribute very little since the response amplitude and latency are not changed following removal of the abdominal ganglion. Similarly, habituation and dishabituation of this withdrawal response are not different after removal of the abdominal ganglion, indicating that the peripheral neural circuit in the isolated siphon can mediate habituation itself, and thus has many of the properties attributed to central neurons. Responses evoked by electrical stimulation of the siphon nerve habituate, depending upon the stimulus intensity and interval. These habituated responses may be dishabituated by tactile or light stimulation of the siphon. These results show that each neural system, peripheral and central, has an excitatory modulatory influence on the other. Normally adaptive siphon responses must be shaped by the integrated activity of both of these neural systems.  相似文献   

7.
The siphon withdrawal response evoked by a weak tactile (water drop) or light stimulus is mediated primarily by neurons in the siphon. Central neurons (abdominal ganglion) contribute very little since the response amplitude and latency are not changed following removal of the abdominal ganglion. Similarly, habituation and dishabituation of this withdrawal response are not different after removal of the abdominal ganglion, indicating that the peripheral neural circuit in the isolated siphon can mediate habituation itself, and thus has many of the properties attributed to central neurons. Response evoked by electrical stimulation of the siphon nerve habituate, depending upon the stimulus intensity and interval. These habituated responses may be dishabituated by tactile or light stimulation of the siphon. These results show that each neural system, peripheral and central, has an excitatory modulatory influence on the other. Normally adaptive siphon responses must be shaped by the integrated activity of both of these neural systems.  相似文献   

8.
Effects of met-enkephalin (opioid peptide) and naloxone (opioid antagonist) on nociceptive sensitization were studied in L-RP11 Helix neurons. In control snails sensitizing stimulation produced reversible membrane depolarization and depression of neural responses evoked by sensory stimuli during the short-term stage of sensitization and facilitation of these responses at the long-term stage. Met-enkephalin (10 but not 0.1 microM) suppressed the neural responses evoked by nociceptive stimuli. Sensitizing stimulation during metenkephalin application prevented the facilitation of neural responses evoked by tactile stimulation of snail head, whereas facilitation of neural responses evoked by chemical stimulation of head or tactile stimulation of foot were similar to that in control sensitized snails. Sensitizing stimulation during met-enkephalin and/or naloxone application prevented the facilitation of neural responses evoked by chemical stimulation of snail head, whereas responses evoked by tactile stimulation of snail head or foot were facilitated (as in neurons of control sensitized snails). Opioids are suggested to be involved in regulation of nociceptive mechanisms and selective induction of long-term plasticity in L-RP11 neural inputs activated by tactile of chemical stimulation of snail head.  相似文献   

9.
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

10.
Our sense of touch helps us encounter the richness of our natural world. Across a myriad of contexts and repetitions, we have learned to deploy certain exploratory movements in order to elicit perceptual cues that are salient and efficient. The task of identifying optimal exploration strategies and somatosensory cues that underlie our softness perception remains relevant and incomplete. Leveraging psychophysical evaluations combined with computational finite element modeling of skin contact mechanics, we investigate an illusion phenomenon in exploring softness; where small-compliant and large-stiff spheres are indiscriminable. By modulating contact interactions at the finger pad, we find this elasticity-curvature illusion is observable in passive touch, when the finger is constrained to be stationary and only cutaneous responses from mechanosensitive afferents are perceptible. However, these spheres become readily discriminable when explored volitionally with musculoskeletal proprioception available. We subsequently exploit this phenomenon to dissociate relative contributions from cutaneous and proprioceptive signals in encoding our percept of material softness. Our findings shed light on how we volitionally explore soft objects, i.e., by controlling surface contact force to optimally elicit and integrate proprioceptive inputs amidst indiscriminable cutaneous contact cues. Moreover, in passive touch, e.g., for touch-enabled displays grounded to the finger, we find those spheres are discriminable when rates of change in cutaneous contact are varied between the stimuli, to supplant proprioceptive feedback.  相似文献   

11.
Polymyxin B (proteinkinase C inhibitor) effects on nociceptive sensitization of semiintact preparation were investigated in LP11 and RP11 snail neurons. It was found that application of sensitizing stimuli to control snail head initiated neural membrane depolarization, increase its excitability as well as depression of neural responses evoked by sensory stimulation during short-term stage. Polymyxin B application suppressed neural responses evoked by sensitizing (nociceptive) stimuli. At the same time changes in neural membrane excitability as well as neural responses evoked by tactile stimulation of snail foot or chemical stimulation of snail head were similar with ones in control snails. Polymyxin Bdid does not change the depression of neural responses evoked by tactile stimulation of snail head during short-term stages of sensitization but significantly suppressed facilitation of neural responses evoked by tactile stimulation of snail head during long-term stage of sensitization. It was suggested that proteinkinase C is involved in regulation of nociceptive mechanisms as well as in plasticity selective induction mechanisms in command neuron synaptic inputs activated by tactile stimulation of snail head.  相似文献   

12.
We investigated whether corticospinal excitability during motor imagery of actions (the power or the pincer grip) with objects was influenced by actually touching objects (tactile input) and by the congruency of posture with the imagined action (proprioceptive input). Corticospinal excitability was assessed by monitoring motor evoked potentials (MEPs) in the first dorsal interosseous following transcranial magnetic stimulation over the motor cortex. MEPs were recorded during imagery of the power grip of a larger-sized ball (7 cm) or the pincer grip of a smaller-sized ball (3 cm)--with or without passively holding the larger-sized ball with the holding posture or the smaller-sized ball with the pinching posture. During imagery of the power grip, MEPs amplitude was increased only while the actual posture was the same as the imagined action (the holding posture). On the other hand, during imagery of the pincer grip while touching the ball, MEPs amplitude was enhanced in both postures. To examine the pure effect of touching (tactile input), we recorded MEPs during imagery of the power and pincer grip while touching various areas of an open palm with a flat foam pad. The MEPs amplitude was not affected by the palmer touching. These findings suggest that corticospinal excitability during imagery with an object is modulated by actually touching an object through the combination of tactile and proprioceptive inputs.  相似文献   

13.
Touch sense     
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.  相似文献   

14.
The ability to localize a chemical stimulus applied to the skin of the forearm was compared to the ability to localize a punctate tactile stimulus. The chemical stimulus was a single, 6-μ1 drop of a 1.0% solution of capsaicin in an ethanol vehicle; the tactile stimulus was a polyester monofilament that exerted 7.5 g of force. Subjects attempted to localize the stimuli at 30-sec intervals for a period of 13.5 min, and rated the perceived intensity and quality of the chemogenic sensations. To avoid generating potentially confounding tactile sensations, localization attempts were made by pointing to the area of sensation with a focused light beam. The results showed that overall, chemical localization was inferior to tactile localization: The absolute error of localization averaged 2.5 cm for capsaicin compared to 1.4 cm for the monofilament. The experiment also revealed that chemical localization (1) varied significantly across arms, (2) exhibited a relatively strong bias toward the elbow, and (3) appeared to be unaffected by the perceived intensity of the sensation. The dominant sensation quality reported was itch. The results are discussed in the context of cutaneous localization in general and localization in the nociceptive system in particular.  相似文献   

15.
We examined behavioral responses of the field cricket Gryllus bimaculatus to tactile stimuli to the antennae. Three stimulants of similar shape and size but different textures were used: a tibia from the hunting spider Heteropoda venatoria (potential predator), a tibia from the orb-web spider Argiope bruennichi (less likely predator), and a glass rod. Each stimulus session comprised a first gentle contact and a second strong contact. The evoked behavioral responses were classified into four categories: aversion, aggression, antennal search, and no response. Regardless of the stimulants, the crickets exhibited antennal search and aversion most frequently in response to the first and second stimuli, respectively. The frequency of aversion was significantly higher to the tibia of H. venatoria than to other stimulants. The most striking observation was that aggressive responses were exclusive to the H. venatoria tibia. To specify the hair type that induced aggression, we manipulated two types of common hairs (bristle and fine) on the tibia of the predatory spider. When bristle hairs were removed from the H. venatoria tibia, aggression was significantly reduced. These results suggest that antennae can discriminate the tactile texture of external objects and elicit adaptive behavioral responses.  相似文献   

16.
Opioid peptides effects on neural membrane as well as neural responses evoked by sensory stimuli with different modality and site of application, were investigated in L-RPII command neurones of defensive behaviour of semi-intact preparation in the land snail Helix lucorum. Met-enkephalin (10 uM) application onto the snail CNS increases membrane excitability and produces facilitation of neural responses evoked by quinine solution (0.5%) application onto snail head and depression of reactions evoked by tactile stimulation of the head. Met-enkephalin in dose of 0.1 uM initiates only a depression of neural responses evoked by tactile stimulation of the head. Leu-enkephalin (10 uM) application suppresses neural reactions evoked by tactile stimulation of the head. Membrane excitability and neural responses evoked by quinine application onto the snail head do not change after leu-enkephalin administration. Effects appear 10-20 min after initiation of the peptide application. Initial neural responses were observed 15-30 min after CNS washing with Ringer solution. In addition, facilitation of neural responses evoked by chemical stimulation of the snail head was found 30-50 min after leu-enkephalin washing. Peptides do not change neural responses evoked by tactile stimulation of the snail foot. Neural effects of peptides were prevented by simultaneous naloxon administration (50 uM). Experimental results show selective opioid peptides' effects on excitability and plasticity of L-RPII neural inputs with site- and modality-specifics.  相似文献   

17.
Ku Y  Ohara S  Wang L  Lenz FA  Hsiao SS  Bodner M  Hong B  Zhou YD 《PloS one》2007,2(8):e771
Our previous studies on scalp-recorded event-related potentials (ERPs) showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA) to the ERP data, we found independent components (ICs) located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC) and the primary somatosensory cortex (SI). The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex) that are involved in sensation and perception of various stimuli.  相似文献   

18.
The dynamic response of the fingerpad plays an important role in the tactile sensory response and precision manipulation, as well as in ergonomic design. This paper investigates the dynamic lumped element response of the human fingerpad in vivo to a compressive load. A flat probe indented the fingerpad at a constant velocity, then held a constant position. The resulting force (0-2 N) increased rapidly with indentation then relaxed during the hold phase. A quasilinear viscoelastic model successfully explained the experimental data. The instantaneous elastic response increased exponentially with position, and the reduced relaxation function included three decaying exponentials (with time constants of approximately 4 ms, 70 ms, and 1.4 s) plus a constant. The model was confirmed with data from sinusoidal displacement trajectories.  相似文献   

19.
In whiskered animals, activity is evoked in the primary sensory afferent cells (trigeminal nerve) by mechanical stimulation of the whiskers. In some cell populations this activity is correlated well with continuous stimulus parameters such as whisker deflection magnitude, but in others it is observed to represent events such as whisker-stimulator contact or detachment. The transduction process is mediated by the mechanics of the whisker shaft and follicle-sinus complex (FSC), and the mechanics and electro-chemistry of mechanoreceptors within the FSC. An understanding of this transduction process and the nature of the primary neural codes generated is crucial for understanding more central sensory processing in the thalamus and cortex. However, the details of the peripheral processing are currently poorly understood. To overcome this deficiency in our knowledge, we constructed a simulated electro-mechanical model of the whisker-FSC-mechanoreceptor system in the rat and tested it against a variety of data drawn from the literature. The agreement was good enough to suggest that the model captures many of the key features of the peripheral whisker system in the rat.  相似文献   

20.
The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object''s material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid–structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号