首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the primate visual pathway, orientation tuning of neurons is first observed in the primary visual cortex. The LGN cells that comprise the thalamic input to V1 are not orientation tuned, but some V1 neurons are quite selective. Two main classes of theoretical models have been offered to explain orientation selectivity: feedforward models, in which inputs from spatially aligned LGN cells are summed together by one cortical neuron; and feedback models, in which an initial weak orientation bias due to convergent LGN input is sharpened and amplified by intracortical feedback. Recent data on the dynamics of orientation tuning, obtained by a cross-correlation technique, may help to distinguish between these classes of models. To test this possibility, we simulated the measurement of orientation tuning dynamics on various receptive field models, including a simple Hubel-Wiesel type feedforward model: a linear spatiotemporal filter followed by an integrate-and-fire spike generator. The computational study reveals that simple feedforward models may account for some aspects of the experimental data but fail to explain many salient features of orientation tuning dynamics in V1 cells. A simple feedback model of interacting cells is also considered. This model is successful in explaining the appearance of Mexican-hat orientation profiles, but other features of the data continue to be unexplained.  相似文献   

2.
In order to probe into the self-organizing emergence of simple cell orientation selectivity, we tried to construct a neural network model that consists of LGN neurons and simple cells in visual cortex and obeys the Hebbian learning rule. We investigated the neural coding and representation of simple cells to a natural image by means of this model. The results show that the structures of their receptive fields are determined by the preferred orientation selectivity of simple cells. However, they are also decided by the emergence of self-organization in the unsupervision learning process. This kind of orientation selectivity results from dynamic self-organization based on the interactions between LGN and cortex.  相似文献   

3.
In order to probe into the self-organizing emergence of simple cell orientation selectivity, we tried to construct a neural network model that consists of LGN neurons and simple cells in visual cortex and obeys the Hebbian learning rule. We investigated the neural coding and representation of simple cells to a natural image by means of this model. The results show that the structures of their receptive fields are determined by the preferred orientation selectivity of simple cells. However, they are also decided by the emergence of self-organization in the unsupervision learning process. This kind of orientation selectivity results from dynamic self-organization based on the interactions between LGN and cortex.  相似文献   

4.
Simple cells in primary visual cortex are believed to extract local contour information from a visual scene. The 2D Gabor function (GF) model has gained particular popularity as a computational model of a simple cell. However, it short-cuts the LGN, it cannot reproduce a number of properties of real simple cells, and its effectiveness in contour detection tasks has never been compared with the effectiveness of alternative models. We propose a computational model that uses as afferent inputs the responses of model LGN cells with center–surround receptive fields (RFs) and we refer to it as a Combination of Receptive Fields (CORF) model. We use shifted gratings as test stimuli and simulated reverse correlation to explore the nature of the proposed model. We study its behavior regarding the effect of contrast on its response and orientation bandwidth as well as the effect of an orthogonal mask on the response to an optimally oriented stimulus. We also evaluate and compare the performances of the CORF and GF models regarding contour detection, using two public data sets of images of natural scenes with associated contour ground truths. The RF map of the proposed CORF model, determined with simulated reverse correlation, can be divided in elongated excitatory and inhibitory regions typical of simple cells. The modulated response to shifted gratings that this model shows is also characteristic of a simple cell. Furthermore, the CORF model exhibits cross orientation suppression, contrast invariant orientation tuning and response saturation. These properties are observed in real simple cells, but are not possessed by the GF model. The proposed CORF model outperforms the GF model in contour detection with high statistical confidence (RuG data set: p < 10−4, and Berkeley data set: p < 10−4). The proposed CORF model is more realistic than the GF model and is more effective in contour detection, which is assumed to be the primary biological role of simple cells.  相似文献   

5.
There are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally.  相似文献   

6.
Spindle orientation defines the plane of cell division and, thereby, the spatial position of all daughter cells. Here, we develop a live cell microscopy-based methodology to extract spindle movements in human epithelial cell lines and study how spindles are brought to a pre-defined orientation. We show that spindles undergo two distinct regimes of movements. Spindles are first actively rotated toward the cells’ long-axis and then maintained along this pre-defined axis. By quantifying spindle movements in cells depleted of LGN, we show that the first regime of rotational movements requires LGN that recruits cortical dynein. In contrast, the second regime of movements that maintains spindle orientation does not require LGN, but is sensitive to 2ME2 that suppresses microtubule dynamics. Our study sheds first insight into spatially defined spindle movement regimes in human cells, and supports the presence of LGN and dynein independent cortical anchors for astral microtubules.  相似文献   

7.
A striking feature of the organization of the early visual pathway is the significant feedback from primary visual cortex to cells in the dorsal lateral geniculate nucleus (LGN). Despite numerous experimental and modeling studies, the functional role for this feedback remains elusive. We present a new firing-rate-based model for LGN relay cells in cat, explicitly accounting for thalamocortical loop effects. The established DOG model, here assumed to account for the spatial aspects of the feedforward processing of visual stimuli, is extended to incorporate the influence of thalamocortical loops including a full set of orientation-selective cortical cell populations. Assuming a phase-reversed push-pull arrangement of ON and OFF cortical feedback as seen experimentally, this extended DOG (eDOG) model exhibits linear firing properties despite non-linear firing characteristics of the corticothalamic cells. The spatiotemporal receptive field of the eDOG model has a simple algebraic structure in Fourier space, while the real-space receptive field, as well as responses to visual stimuli, are found by evaluation of an integral. As an example application we use the eDOG model to study effects of cortical feedback on responses to flashing circular spots and patch-grating stimuli and find that the eDOG model can qualitatively account for experimental findings.  相似文献   

8.
The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA''s cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA''s anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation.  相似文献   

9.
在九只成年猫上用玻璃电极记录了单个外膝体神经元对不同方位的移动正弦光栅刺激的反应共详细测定了400个细胞的方位调谐特性。少数外膝体神经元具有非寻常的方位调谐特性,包括:具蝴蝶状调谐曲线的方位调谐特性;双调谐的方位调谐特性和最优方位随刺激光栅空间频率的改变而变化的方位调谐特性。这些细胞非寻常的方位调谐特性往往伴随着非寻常的空间频率调谐特性。空们的方位调谐特性和空间频率调谐特性都不能用Soodak等提  相似文献   

10.
Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.  相似文献   

11.
We propose a computational model of a simple cell with push-pull inhibition, a property that is observed in many real simple cells. It is based on an existing model called Combination of Receptive Fields or CORF for brevity. A CORF model uses as afferent inputs the responses of model LGN cells with appropriately aligned center-surround receptive fields, and combines their output with a weighted geometric mean. The output of the proposed model simple cell with push-pull inhibition, which we call push-pull CORF, is computed as the response of a CORF model cell that is selective for a stimulus with preferred orientation and preferred contrast minus a fraction of the response of a CORF model cell that responds to the same stimulus but of opposite contrast. We demonstrate that the proposed push-pull CORF model improves signal-to-noise ratio (SNR) and achieves further properties that are observed in real simple cells, namely separability of spatial frequency and orientation as well as contrast-dependent changes in spatial frequency tuning. We also demonstrate the effectiveness of the proposed push-pull CORF model in contour detection, which is believed to be the primary biological role of simple cells. We use the RuG (40 images) and Berkeley (500 images) benchmark data sets of images with natural scenes and show that the proposed model outperforms, with very high statistical significance, the basic CORF model without inhibition, Gabor-based models with isotropic surround inhibition, and the Canny edge detector. The push-pull CORF model that we propose is a contribution to a better understanding of how visual information is processed in the brain as it provides the ability to reproduce a wider range of properties exhibited by real simple cells. As a result of push-pull inhibition a CORF model exhibits an improved SNR, which is the reason for a more effective contour detection.  相似文献   

12.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

13.
We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58° when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8° in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.  相似文献   

14.
Siddiqui MS  Bhaumik B 《PloS one》2011,6(10):e24997
Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.  相似文献   

15.
Sadagopan S  Ferster D 《Neuron》2012,74(5):911-923
Contrast invariant orientation tuning in simple cells of the visual cortex depends critically on contrast dependent trial-to-trial variability in their membrane potential responses. This observation raises the question of whether this variability originates from within the cortical circuit or the feedforward inputs from the lateral geniculate nucleus (LGN). To distinguish between these two sources of variability, we first measured membrane potential responses while inactivating the surrounding cortex, and found that response variability was nearly unaffected. We then studied variability in the LGN, including contrast dependence, and the trial-to-trial correlation in responses between nearby neurons. Variability decreased significantly with contrast, whereas correlation changed little. When these experimentally measured parameters of variability were applied to a feedforward model of simple cells that included realistic mechanisms of synaptic integration, contrast-dependent, orientation independent variability emerged in the membrane potential responses. Analogous mechanisms might contribute to the stimulus dependence and propagation of variability throughout the neocortex.  相似文献   

16.
The visual response of a cell in the primary visual cortex (V1) to a drifting grating stimulus at the cell’s preferred orientation decreases when a second, perpendicular, grating is superimposed. This effect is called masking. To understand the nonlinear masking effect, we model the response of Macaque V1 simple cells in layer 4Cα to input from magnocellular Lateral Geniculate Nucleus (LGN) cells. The cortical model network is a coarse-grained reduction of an integrate-and-fire network with excitation from LGN input and inhibition from other cortical neurons. The input is modeled as a sum of LGN cell responses. Each LGN cell is modeled as the convolution of a spatio-temporal filter with the visual stimulus, normalized by a retinal contrast gain control, and followed by rectification representing the LGN spike threshold. In our model, the experimentally observed masking arises at the level of LGN input to the cortex. The cortical network effectively induces a dynamic threshold that forces the test grating to have high contrast before it can overcome the masking provided by the perpendicular grating. The subcortical nonlinearities and the cortical network together account for the masking effect. Melinda Koelling is formerly from Center for Neural Science and Courant Institute, New York University.  相似文献   

17.
On the basis of recent neurophysiological findings on the mammalian visual cortex, a selforganizing neural network model is proposed for the understanding of the development of complex cells. The model is composed of two kinds of connections from LGN cells to a complex cell. One is direct excitatory connections and the other is indirect inhibitory connections via simple cells. Inhibitory synapses between simple cells and complex cells are assumed to be modifiable. The model was simulated on a computer to confirm its behavior.  相似文献   

18.
视觉系统皮层下细胞的方位和方向敏感性   总被引:4,自引:0,他引:4  
寿天德  周逸峰 《生理学报》1996,48(2):105-112
视觉方位、方向选择性曾被认为是高等哺乳动物视皮层细胞的特有功能。近年来大量的实验结果表明,视皮层下的外膝体神经元和视网膜神经节细胞都具一定程度的方位和方向敏感性,这些性质是遗传决定的,不受后天环境的影响。在外膝体内,已为视皮层细胞高度的方位、方向选择性和功能柱的形成做出了初步的分类与编组,提供了前级安排。这种皮层下的方位、方向敏感性细胞在发育过程中传递和加工了环境视觉信息,促进了视皮层更强的方位、方向选择性机制和方位功能柱的形成。外膝体在视觉信息平行处理通道的形成上起着分类集聚的重要作用。  相似文献   

19.
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1’s function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.  相似文献   

20.
A neural model is constructed based on the structure of a visual orientation hypercolumn in mammalian striate cortex. It is then assumed that the perceived orientation of visual contours is determined by the pattern of neuronal activity across orientation columns. Using statistical estimation theory, limits on the precision of orientation estimation and discrimination are calculated. These limits are functions of single unit response properties such as orientation tuning width, response amplitude and response variability, as well as the degree of organization in the neural network. It is shown that a network of modest size, consisting of broadly orientation selective units, can reliably discriminate orientation with a precision equivalent to human performance. Of the various network parameters, the discrimination threshold depends most critically on the number of cells in the hypercolumn. The form of the dependence on cell number correctly predicts the results of psychophysical studies of orientation discrimination. The model system's performance is also consistent with psychophysical data in two situations in which human performance is not optimal. First, interference with orientation discrimination occurs when multiple stimuli activate cells in the same hypercolumn. Second, systematic errors in the estimation of orientation can occur when a stimulus is composed of intersecting lines. The results demonstrate that it is possible to relate neural activity to visual performance by an examination of the pattern of activity across orientation columns. This provides support for the hypothesis that perceived orientation is determined by the distributed pattern of neural activity. The results also encourage the view of neural activity. The results also are determined by the responses of many neurons rather than the sensitivity of individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号