首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that inspiratory muscles, like other skeletal muscles, would exert greater force under pliometric conditions (being lengthened while active) than under isometric or miometric (active shortening) conditions. Maximal inspiratory pressure-flow curves of the respiratory system are analogous to the force-velocity curves for isolated muscle (Agostoni and Fenn, J. Appl. Physiol. 15:349-353, 1960). We measured esophageal pressure (Pes) and plethysmographic flow (V) at relaxation volume of the respiratory system in six trained subjects inspiring maximally through graded resistors (miometric), against a closed airway (isometric), and while constant expiratory flows were forced by a reduced pressure source at the airway opening (pliometric). Pes varied inversely with V and this trend continued into the pliometric range. In addition we found that the pressure-flow characteristics of the rib cage and of the abdomen are similar to those for the chest wall as a whole. The mechanical and energetic advantages of muscle activity under pliometric conditions may be available to some inspiratory muscles in both normal and pathological situations.  相似文献   

2.
Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 +/- 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 +/- 0.40 liter (P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 +/- 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 +/- 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest (P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.  相似文献   

3.
To study the effects of continuous positive airway pressure (CPAP) on lung volume, and upper airway and respiratory muscle activity, we quantitated the CPAP-induced changes in diaphragmatic and genioglossal electromyograms, esophageal and transdiaphragmatic pressures (Pes and Pdi), and functional residual capacity (FRC) in six normal awake subjects in the supine position. CPAP resulted in increased FRC, increased peak and rate of rise of diaphragmatic activity (EMGdi and EMGdi/TI), decreased peak genioglossal activity (EMGge), decreased inspiratory time and inspiratory duty cycle (P less than 0.001 for all comparisons). Inspiratory changes in Pes and Pdi, as well as Pes/EMGdi and Pdi/EMGdi also decreased (P less than 0.001 for all comparisons), but mean inspiratory airflow for a given Pes increased (P less than 0.001) on CPAP. The increase in mean inspiratory airflow for a given Pes despite the decrease in upper airway muscle activity suggests that CPAP mechanically splints the upper airway. The changes in EMGge and EMGdi after CPAP application most likely reflect the effects of CPAP and the associated changes in respiratory system mechanics on the afferent input from receptors distributed throughout the intact respiratory system.  相似文献   

4.
We tested the hypothesis that the mechanical arrangement of costal (COS) and crural (CRU) diaphragms can be changed from parallel to series when direct or indirect transmission of tension occurs. Ratio of rib cage to abdominal displacement (RC/AB) resulting from separate COS and CRU stimulations were used to measure RC expanding action. Hyperinflation in six dogs caused RC/AB with COS and CRU stimulations to change progressively from 0.53 +/- 0.07 (SE) and 0.03 +/- 0.05 at functional residual capacity (FRC) to -0.48 +/- 0.08 and -0.46 +/- 0.05 at 68% inspiratory capacity, respectively. Liquid substitution of abdominal contents in six other dogs equalized abdominal pressure swings (delta Pab), without changing chest wall elastic properties or geometry, or costal RC/AB (0.35 +/- 0.07 before and 0.33 +/- 0.06 after) but caused crural RC/AB to change from 0.01 +/- 0.05 to 0.31 +/- 0.01. We conclude that hyperinflation changes fiber orientation, allowing direct transmission of tension between COS and CRU, which become linked mechanically in series (the diaphragm acts as a unit with RC deflating action); and equalization of delta Pab causes indirect transmission of tension between COS and CRU, which become linked in series (the diaphragm acts as a unit with RC inflating action).  相似文献   

5.
Effect of chest wall vibration on breathlessness in normal subjects   总被引:2,自引:0,他引:2  
This study evaluated the effect of chest wall vibration (115 Hz) on breathlessness. Breathlessness was induced in normal subjects by a combination of hypercapnia and an inspiratory resistive load; both minute ventilation and end-tidal CO2 were kept constant. Cross-modality matching was used to rate breathlessness. Ratings during intercostal vibration were expressed as a percentage of ratings during the control condition (either deltoid vibration or no vibration). To evaluate their potential contribution to any changes in breathlessness, we assessed several aspects of ventilation, including chest wall configuration, functional residual capacity (FRC), and the ventilatory response to steady-state hypercapnia. Intercostal vibration reduced breathlessness ratings by 6.5 +/- 5.7% compared with deltoid vibration (P less than 0.05) and by 7.0 +/- 8.3% compared with no vibration (P less than 0.05). The reduction in breathlessness was accompanied by either no change or negligible change in minute ventilation, tidal volume, frequency, duty cycle, compartmental ventilation, FRC, and the steady-state hypercapnic response. We conclude that chest wall vibration reduces breathlessness and speculate that it may do so through stimulation of receptors in the chest wall.  相似文献   

6.
Mean inspiratory pressure (Pi), estimated from the occlusion pressure at the mouth and the inspiratory time, is useful as a noninvasive estimate of respiratory muscle effort during spontaneous breathing in normal subjects and patients with chronic obstructive pulmonary disease. The aim of this study was to compare the Pi with respect to mean esophageal pressure (Pes) in patients with restrictive disorders. Eleven healthy volunteers, 12 patients with chest wall disease, 14 patients with usual interstitial pneumonia, and 17 patients with neuromuscular diseases were studied. Pi, Pes, and mean transdiaphragmatic pressure were simultaneously measured. Tension-time indexes of diaphragm (TTdi) and inspiratory muscles (TTmu) were also determined. In neuromuscular patients, significant correlations were found between Pi and Pes, Pi and transdiaphragmatic pressure, and TTmu and TTdi. A moderate agreement between Pi and Pes and between TTmu and TTdi was found. No significant correlation between these parameters was found in the other patient groups. These findings suggest that Pi is a good surrogate for the invasive measurement of respiratory muscle effort during spontaneous breathing in neuromuscular patients.  相似文献   

7.
We measured total chest wall impedance (Zw), "pathway impedances" of the rib cage (Zrcpath), and diaphragm-abdomen (Zd-apath), and impedance of the belly wall including abdominal contents (Zbw+) in five subjects during sustained expiratory (change in average pleural pressure [Ppl] from relaxation = 10 and 20 cmH2O) and inspiratory (change in Ppl = -10 and -20 cmH2O) muscle contraction, using forced oscillatory techniques (0.5-4 Hz) we have previously reported for relaxation (J. Appl. Physiol. 66: 350-359, 1989). Chest wall configuration and mean lung volume were kept constant. Zw, Zrcpath, Zd-apath, and Zbw+ all increased greatly at each frequency during expiratory muscle contraction; increases were proportional to effort. Zw, Zrcpath, and Zd-apath increased greatly during inspiratory muscle contraction, but Zbw+ did not. Resistances and elastances calculated from each of the impedances showed the same changes during muscle contraction as the corresponding impedances. Each of the resistances decreased as frequency increased, independent of effort; elastances generally increased with frequency. These frequency dependencies were similar to those measured in relaxed or tetanized isolated muscle during sinusoidal stretching (P.M. Rack, J. Physiol. Lond. 183: 1-14, 1966). We conclude that during respiratory muscle contraction 1) chest wall impedance increases, 2) changes in regional chest wall impedances can be somewhat independent, depending on which muscles contract, and 3) increases in chest wall impedance are due, at least in part, to changes in the passive properties of the muscles themselves.  相似文献   

8.
We studied the changes in functional residual capacity (FRC), thoracoabdominal volume (Vw), and chest wall configuration in five normal subjects seated in an aircraft flying parabolic trajectories resulting in 20-s periods of microgravity. We measured vital capacity (VC), inspiratory capacity, and tidal volume by integrating airflow at the mouth and changes in rib cage and abdominal volume (delta Vrc and delta Vab, respectively, where delta Vrc + delta Vab = delta Vw) using induction plethysmography. During microgravity (0 Gz) FRC decreased by 413 +/- 70 (SE) ml and VC by 0.37 liter. The decrease in Vw did not differ from that in FRC and was entirely the result of reduction of Vab, the Vrc showing no significant change. During tidal breathing the abdominal contribution (delta Vab/delta Vw) increased from 0.39 +/- 0.08 at 1 Gz to 0.57 +/- 0.08 at 0 Gz. During brief periods of hypergravity (approximately 1.8 Gz) all changes were opposite in sign and relatively smaller. Limited data during "roller coaster" flight patterns suggested that, in contrast to configurational changes, the temporal pattern of breathing was uninfluenced by changes in Gz. We conclude that at the onset of weightlessness there are substantial changes in lung volume and thoracoabdominal configuration. Abdominal contribution to tidal excursions increases but the temporal pattern of breathing is unchanged.  相似文献   

9.
Using a respiratory inductive plethysmograph (Respitrace) we studied thoracoabdominal movements in eight normal subjects during inspiratory resistive (Res) and elastic (El) loading. The magnitude of loads was chosen so as to produce a fall in inspiratory mouth pressure of 20 cmH2O. The contribution of rib cage (RC) to tidal volume (VT) increased significantly from 68% during quiet breathing (QB) to 74% during El and 78% during Res. VT and breathing frequency did not change significantly. During loading a phase lag was present on inspiration so that the abdomen led the rib cage. However, outward movement of the abdomen ceased in the latter part of inspiration, and the RC became the sole contributor to VT. These observations suggest greater recruitment of the inspiratory musculature of the RC than the diaphragm during loading, although changes in the mechanical properties of the chest wall may also have contributed. Indeed, an increase in abdominal end-expiratory and end-inspiratory pressures was observed in five out of six subjects, indicating abdominal muscle recruitment which may account for part of the reduction in abdominal excursion. Both Res and El increased the rate of emptying of the respiratory system during the ensuing unloaded expiration as a result of a reduction in rib cage expiratory-braking mechanisms. The time course of abdominal displacements during expiration was unaffected by loading.  相似文献   

10.
Hyperinflation is the consequence of a dysbalance of static forces (determining the relaxation volume) and/or of the dynamic components. The relaxation volume is determined by an equilibrium between the elastic recoil of the lungs and of the chest walls. The dynamic components include the pattern of breathing, upper airway resistance and postinspiratory activity of inspiratory muscles. The respiratory and laryngeal muscles are under control and thus both static and dynamic hyperinflation can be secured. Our knowledge of the mechanism of increased FRC is based on clinical observations and on experiments. The most frequent stimuli leading to a dynamic increase of functional residual lung capacity (FRC) include hypoxia and vagus afferentation. Regulation of FRC is still and undetermined concept. The controlled increase of FRC, hyperinflation, participates in a number of lung diseases.  相似文献   

11.
We investigated the breathing patterns of 17 subjects anesthetized with enflurane before and after partial muscle paralysis produced by pancuronium bromide. In the face of significant muscle weakness produced by pancuronium, breathing patterns are characterized by decreases in both tidal volume and respiratory frequency. The decreased tidal volume corresponded to the decrease in occlusion pressure, indicating that the decreased tidal volume results solely from a decreased contractile force of the respiratory muscles. The decreased respiratory frequency was due to prolongation of both inspiratory and expiratory time without changing the ratio of the inspiratory time to the total breath time. Withdrawal of phasic vagal influence by airway occlusion before partial muscle paralysis revealed that an active Breuer-Hering inflation reflex was operative in only 8 of all 17 subjects. Since the contribution of the Breuer-Hering inflation reflex alone does not seem to account for the consistent decrease in respiratory frequency, some other mechanisms modulating respiratory frequency might be involved in the characteristic breathing patterns during partial muscle paralysis under enflurane anesthesia.  相似文献   

12.
We measured the effect of thoracoabdominal configuration on twitch transdiaphragmatic pressure (Pdi, t) in response to supramaximal, transcutaneous, bilateral phrenic nerve shocks in three thin normal men. Pdi, t was measured as a function of lung volume (VL) in the relaxation configuration, at functional residual capacity (FRC), and at the same end-tidal VL 1) during relaxation; 2) with the abdomen (Ab) expanded and the rib cage (RC) in its relaxed FRC configuration; 3) with RC expanded and Ab in its relaxed FRC configuration; and 4) in configuration 3 with an active transdiaphragmatic pressure similar to that required to produce configuration 2. In increasing VL from FRC to configuration 1, Pdi, t decreased by 3.6 cmH(2)O; to configuration 2 by 14.8 cmH(2)O; to configuration 3 by 3.7 cmH(2)O; and to configuration 4 by 2.7 cmH(2)O. We argue that changes in velocity of shortening and radius of curvature are unlikely to account for these effects and suggest that changes in diaphragmatic fiber length (L(di)) are primarily responsible. If so, equivolume displacements of Ab and RC change L(di) in a ratio of approximately 4:1. We conclude that Pdi, t is exquisitely sensitive to abdominal displacements that must be rigorously controlled if Pdi, t is to be used to assess diaphragmatic contractility.  相似文献   

13.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). Eight intubated premature infants (640-3,700 g) with chest wall distortion were studied using a water-filled catheter system to measure Pes. During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.  相似文献   

14.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

15.
Using 133Xe measured the regional distribution of FRC and of boluses administered at FRC in seated subjects during relaxation, lateral compression of the lower rib cage, and contraction of the inspiratory muscles so that mouth pressure was 50 cmH2O subatmospheric. Lateral compression increased apex-to-base differences of volume and bolus distribution, suggesting an increase of the apex-to-base gradient of pleural surface pressure. Changes in rib cage shape were measured with magnetometers and were qualitatively similar to those associated with increases in apex-to-base difference of pleural surface pressure in animals. Inspiratory effort decreased apex-to-base difference in volume and induced a similar trend in bolus distribution. Though changes in the rib cage shape were directionally similar, they were much smaller than those associated with decreased pleural surface pressure gradients in animals, and the changes in regional volume we observed were more likely due to forces generated by diaphragmatic contraction. These results were compatible with the apex-to-base gradient of pleural pressure being strongly influenced by shape adaptation between lung and chest wall.  相似文献   

16.
In 14 healthy male subjects we studied the effects of rib cage and abdominal strapping on lung volumes, airway resistance (Raw), and total respiratory resistance (Rrs) and reactance (Xrs). Rib cage, as well as abdominal, strapping caused a significant decrease in vital capacity (respectively, -36 and -34%), total lung capacity (TLC) (-31 and -27%), functional residual capacity (FRC) (-28 and -28%), and expiratory reserve volume (-40 and -48%) and an increase in specific airway conductance (+24 and +30%) and in maximal expiratory flow at 50% of control TLC (+47 and +42%). The decrease of residual volume (RV) was significant (-12%) with rib cage strapping only. Abdominal strapping resulted in a minor overall increase in Rrs, whereas rib cage strapping produced a more marked increase at low frequencies; thus a frequency dependence of Rrs was induced. A similar pattern, but with lower absolute values, of Rrs was obtained by thoracic strapping when the subject was breathing at control FRC. Xrs was decreased, especially at low frequencies, with abdominal strapping and even more with thoracic strapping; thus the resonant frequency of the respiratory system was shifted toward higher frequencies. Partitioning Rrs and Xrs into resistance and reactance of lungs and chest wall demonstrated that the different effects of chest wall and abdominal strapping on Rrs and Xrs reflect changes mainly of chest wall mechanics.  相似文献   

17.
Abdominal muscles are the most important expiratory muscles for coughing. Spinal cord-injured patients have respiratory complications because of abdominal muscle weakness and paralysis and impaired ability to cough. We aimed to determine the optimal positioning of stimulating electrodes on the trunk for the noninvasive electrical activation of the abdominal muscles. In six healthy subjects, we compared twitch pressures produced by a single electrical pulse through surface electrodes placed either posterolaterally or anteriorly on the trunk with twitch pressures produced by magnetic stimulation of nerve roots at the T(10) level. A gastroesophageal catheter measured gastric pressure (Pga) and esophageal pressure (Pes). Twitches were recorded at increasing stimulus intensities at functional residual capacity (FRC) in the seated posture. The maximal intensity used was also delivered at total lung capacity (TLC). At FRC, twitch pressures were greatest with electrical stimulation posterolaterally and magnetic stimulation at T(10) and smallest at the anterior site (Pga, 30 +/- 3 and 33 +/- 6 cm H(2)O vs. 12 +/- 3 cm H(2)O; Pes 8 +/- 2 and 11 +/- 3 cm H(2)O vs. 5 +/- 1 cm H(2)O; means +/- SE). At TLC, twitch pressures were larger. The values for posterolateral electrical stimulation were comparable to those evoked by thoracic magnetic stimulation. The posterolateral stimulation site is the optimal site for generating gastric and esophageal twitch pressures with electrical stimulation.  相似文献   

18.
The pattern of rib cage (RC) and abdomen (AB) motion and the electromyograms of the triangularis sterni (TS) and abdominal external oblique (EO) muscles were studied during speech and reading in six normal uninformed subjects in the sitting posture. Most phrases were started from within the tidal breathing range and extended below RC and AB spontaneous end-expiratory volumes. On the average, 75% of the change in chest wall volume occurred below the resting end-expiratory level. The expired volume resulted from a large predominance of RC displacement, and this was accompanied by marked recruitment of the TS. The EO was also generally activated, but the pattern of activation was less consistent. We conclude that 1) speech occurs primarily below the spontaneous end-expiratory level; 2) most of the volume change is caused by active emptying of the RC produced, at least in part, by contraction of the TS; 3) concomitant activation of the abdominal muscles serves to optimize the inspiratory function of the diaphragm, which has to contract rapidly between phrases to refill the respiratory system.  相似文献   

19.
The purposes of the present study were to determine the changes in functional residual capacity (FRC) during inspiratory loading and to examine their mechanisms. We studied seven normal subjects seated in a body plethysmograph. In both graded inspiratory elastic (35, 48, and 68 cmH2O/l) and resistive (21, 86, and 192 cmH2O.l-1.s) loading, FRC invariably decreased from control FRC and phasic expiratory activity increased. The reduction in FRC was greater with greater loads. A single inspiratory effort against an inspiratory occlusion at three different target mouth pressures (-25, -50, and -75 cmH2O) and durations (1, 2, and 5 s) also resulted in a decrease in FRC with an increase in expiratory electromyogram activity in the following expiration. The decrease in FRC was greater with greater target pressure and duration. This decrease in FRC is qualitatively similar to that during inspiratory loaded breathing, and we suspect that the same mechanisms are at work. Because neither vagal nor chemoreceptor reflex can account for these responses, we suspect conscious awareness of breathing or behavioral control to be responsible. In an additional study, the sensation of discomfort of breathing during elastic loading decreased with a decrease in FRC. These results suggest that the reduced FRC may be due to behavioral control of breathing to reduce the sensation of dyspnea during inspiratory loading.  相似文献   

20.
In anesthetized rabbits, direct and integrated phrenic neurogram (Ephr) and electromyograms from the diaphragm (Edi) and intercostal (Eic) (2nd space) and transversus abdominis muscles (Etr) were simultaneously recorded in two protocols. 1) In animals breathing spontaneously, we used infinite inspiratory (RI) or expiratory (RE) resistive load and intravenous injections of carbachol, histamine, or phenyl diguanide (PDG). All circumstances except RE evoked tonic activities in Ephr, Edi, and Eic but never in Etr. Intravenous atropine abolished carbachol-induced bronchoconstriction and associated tonic inspiratory activities, but this effect persisted with RI, histamine, and PDG. Selective procaine block of conduction in thin vagal fibers (with persistence of the Breuer-Hering inflation reflex) reduced or suppressed the tonic response, which was abolished in all cases after vagotomy. 2) In rabbits artificially ventilated with open chest, passive deflation of the lung or intravenous injections of histamine or PDG also produced tonic discharge in Ephr and often in Eic. The present results demonstrate that 1) stimulation of vagal afferents and mostly thin sensory fibers elicits tonic inspiratory discharges, 2) bronchoconstriction is not necessary for the induction of the response, and 3) reflexes from the chest wall do not mediate this response in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号