首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial restriction endonucleases containing the dinucleotide CpG in their cleavage sequences were used to compare the methylation patterns of primarily repeated DNA sequences in (1) bovine somatic cell native DNAs vs bovine sperm cell native DNA and (2) native vs renatured bovine liver and sperm cell DNAs. The restriction patterns of sperm native DNA differ markedly from those of somatic cell native DNAs when using Hpa II, Hha I, and Ava I but not when using the enzymes Eco RI and Msp I. Digestion patterns of germ cell renatured DNA differed significantly from those of germ cell native DNA when using Hpa II but not when using Msp I or Eco RI. The results may not be due to artifacts of renaturation of the DNAs. The results are consistent with the concept that germ cell DNA may be strand asymmetrically hemimethylated. The data also suggest that methylation of the 5'-cytosine in the sequence CCGG renders this site insensitive to cleavage by Msp I.  相似文献   

2.
We have examined aspects of the interaction of cycled microtubule protein preparations with 35S-labeled mouse DNA tracer in a competition system with unlabelled competitor E. coli or mouse DNA. The nitrocellulose filter binding assay was used to measure interaction by scintillation counting. DNA molecular weight affected the levels of filter retained 35S-labelled mouse tracer DNA. Filter retention levels increased if 35S-labelled mouse DNA tracer size was increased, and the filter binding level decreased if competitor DNA size was increased. There was a sizeable, reproducible difference in the 35S-labelled mouse DNA tracer binding level of about 1% when E. coli or mouse DNA competitors were compared. Mouse DNA more effectively competed with 35S-labelled mouse DNA for microtubule protein binding than did E. coli DNA, suggesting that a small class of higher-organism DNA sequences interacts very strongly with microtubule protein. From other studies we know this to be the MAP fraction (Marx, K.A. and Denial, T. (1984) in The Molecular Basis of Cancer (Rein, R., ed.), Alan R. Liss, New York, in the press; and Villasante, E., Corces, V.G., Manso-Martinez, R. and Avila, J. (1981) Nucleic Acids Res. 9, 895–908). We find that this difference in competitor DNA strength is qualitatively similar under high-stringency conditions (0.5 M NaCl, high competitor [DNA]) we developed for examining high-affinity complexes. Under high-stringency conditions we isolated 1.2% and 0.6% of 35S-labelled mouse DNA at 4200 and 350 bp respective sizes as nitrocellulose filter bound DNA-protein complexes. At both molecular weights these high-affinity DNA sequences, isolated from the filters, were shown to be significantly enriched in repetitive DNA sequences by S1 nuclease solution reassociation kinetics. The kinetics are consistent with about a 4-fold mouse satellite DNA enrichment as well as enrichment in other repetitious DNA sequence classes. The high molecular weight filter-bound DNA samples were sedimented to equilibrium in CsCl buoyant density gradients and found to contain primarily mouse satellite DNA density sequences (1.691 g/cm3) with some minor fractions at other density positions (1.670, 1.682, 1.705, 1.740, 1.760 g/cm3) similar to those observed by our laboratory in previous investigations of micrococcal nuclease-resistant chromatin (Marx, K.A. (1977) Biochem. Biophys. Res. Commun. 78, 777–784). That the high-affinity microtubule-bound DNA was some 3–5-fold enriched in mouse satellite sequences was demonstrated by its characteristic BstNI restriction enzyme cleavage pattern  相似文献   

3.
X-ray fiber diffraction studies of satellite DNAs from Gecarcinus lateralis, Drosophila virilis and Mus musculus, all of which have highly repetitious base sequences but with different degrees of sequence complexity, reveal only classical polynucleotide duplex structures in contrast to some highly repetitious synthetic DNAs.  相似文献   

4.
Sex chromosome associated satellite DNAs isolated from the snakes Elaphe radiata (sat III) (Singh et al., 1976) and Bungarus fasciatus (Elapidae) (minor satellite) are evolutionarily conserved throughout the suborder Ophidia. An autosome limited satellite DNA (B. fasciatus major satellite) is not similarly conserved. Both types of satellites have been studied by in situ hybridisation in various somatic tissues and germ cells where it has been observed that the W sex chromosome remains condensed in interphase nuclei. In growing oocytes however, the W chromosome satellite rich heterochromatin decondenses completely whilst the autosomal satellite rich regions remain condensed. Later, the cycle is reversed and the W chromosome condenses whilst the autosomal satellite regions decondense. In a primitive snake (Eryx johni johni) where the sex chromosomes are not differentiated and where there is no satellite DNA specific to them, these phenomena are absent. — The differential behaviour of autosomal and sex chromosome associated satellite DNAs is discussed in the light of gene regulation.  相似文献   

5.
Extrachromosomal circular (ecc) DNA was isolated from mouse brain, liver, and heart tissues at different ages. To determine the abundance of repetitive sequences in eccDNAs, preparations were probed for short-interspersed (B1 and B2), long-interspersed (L1), endogenous retroviral-like (IAP), and tandemly repeated satellite sequences (SAT) of the mouse genome. Together these sequence families comprise approximately 15% of the mouse genome. The hybridization results showed that each tissue had a characteristic pattern of repetitive sequence elements in eccDNAs, and the abundance of repetitive sequences changed as a function of age. Repetitive sequences decreased in liver and brain eccDNAs from 1 month to 8 months of age but appeared to remain stable thereafter. In contrast, repetitive sequence families in heart eccDNAs were constant from 1 month to 16 months of age but declined in 24-month-old mice. The present studies indicate that extrachromosomal sequences exhibit greater flexibility than chromosomal sequences.  相似文献   

6.
Interspersion of mouse satellite deoxyribonucleic acid sequences   总被引:2,自引:0,他引:2  
P J Stambrook 《Biochemistry》1981,20(15):4393-4398
DNA sequences with homology to the major (A + T)-rich mouse satellite component were localized in CsCl gradients by hybridization with a labeled satellite cRNA probe. Although, as expected, most of the hybridization was to DNA in the satellite-rich shoulder, substantial radioactive cRNA hybridized with DNA from denser regions of the gradient. Further examination revealed that hybridization to main-band DNA was not due to physical trapping of satellite DNA in the gradient, and melting experiments argue that the associated radioactivity was due to true RNA/DNA hybridization. Nearest-neighbor analysis of hybridized [alpha-32P]CTP-labeled l-strand cRNA indicates that hybridization to main-band DNA is by the satellite cRNA and not a contaminant. Together, these data argue that mouse satellite-like sequences are interspersed within the main-band fraction of DNA. For the support of this contention, total mouse DNA, purified main-band DNA, and purified satellite DNA were digested with EcoRI, sedimented in a sucrose gradient, and hybridized with labeled satellite cRNA. Mouse satellite DNA is not cleaved with EcoRI, so that purified EcoRI-digested satellite DNA sediments as a high molecular weight component. When total mouse DNA is digested with EcoRI, the majority of satellite-like sequences remain as high molecular weight DNA; however, significant amounts of satellite-like sequences sediment with the bulk of the lower molecular weight digested DNA, lending further credence to the argument that satellite-like sequences are interspersed with main-band DNA.  相似文献   

7.
8.
Summary Comparisons of nucleic acid methylation between paired neoplastic and non-neoplastic mouse cell lines have shown a striking difference in the deoxyribonucleic acid (DNA) peak eluted from methylated albumin-kieselguhr columns (R. Gantt and V. J. Evans, 1969, Cancer Res. 29: 536–541). Since mouse satellite DNA is relatively highly methylated, its 5-methylcytosine content was compared with mainband DNA in these two paired cell lines to determine whether this might account for the observed differences. The cell DNA was labeled with methyl-labeled methionine and isolated from the cells by repeated neutral cesium chloride isopycnic centrifugation. The satellite DNA strands were then separated in an alkaline cesium chloride gradient. Both the 5-methylcytosine content and the relative amounts of satellite DNA were indistinguishable in the paired cell lines. Further, the results showed that both strands of satellite DNA had virtually equal amounts of 5-methylcytosine, although the heavy strand contains 1.5 times more cytosine than the light strand.  相似文献   

9.
The replication of mouse satellite DNA was delayed when synchronized 3T3 cells were exposed to low concentrations of hydroxyurea during S phase, It appears that the onset of satellite replication is not a time dependent event, but instead requires that a certain amount of main band DNA be synthesized first. Using hydroxyapatite chromatography and S1 nuclease digestion, a procedure was developed to quantitate the synthesis of both satellite and neighboring main band sequences. The replication kinetics of satellite determined by this method agree with previous estimates. Main band sequences adjacent to satellite appear to replicate in concert with satellite DNA. The results are discussed and related to the limitations of the techniques utilized.  相似文献   

10.
A phylogenetic reconstruction based on the amplification of 3 satellite DNAs (stDNAs) was carried out in 1 crustacean species and 15 bivalve species of the subclass Pteriomorphia (10, subfamily Mytilinae; 1, subfamily Litophaginae; 1, subfamily Modiolinae, all belonging to family Mytilidae; 1, family Arcidae; and 2, family Pectinidae). The sequences obtained showed motifs with high similarity to those of A and B boxes of tRNA promoter regions. Dot-blot hybridizations revealed that the 3 stDNAs are present mainly in high copy numbers for each species of the genus Mytilus, whereas for the other species they appear in low copy numbers. Maximum-parsimony trees evidenced a tendency to group Mytilus clones together, and species containing these sequences as a single copy were distributed among the different mytilids. Finally, the possible origin and evolution of these stDNAs is discussed.  相似文献   

11.
A class of restriction endonuclease fragments near 185 bp in length and comprising approximately 20% of the genomes of 3 species of Hawaiian Drosophila has been cloned using bacteriophage M13. The nucleotide sequences of 14 clones have been determined and the variation between clones has been found to be due to deletions and base changes. Analyses of uncloned material show that the cloning system itself does not introduce the variation. The variation of the basic repeat within and between species is high; 15% due to deletions and 10% due to base changes. The Drosophila data are similar in many respects to both the 23 bp calf satellite results (Pech et al., 1979b) and those from sequence analyses of the 170 bp primate restriction fragments (Rubin et al, 1979; Donehower et al., 1980, Wu and Manuelidis, 1980). The intraspecies level of base changes and deletions in the calf satellite approaches 25% as does that in the human/African green monkey/baboon comparisons. The between species variation in the primate group is near 35%. Direct sequencing methods thus reveal a widespread sequence heterogeneity in both invertebrate and mammalian satellite systems of long or short repeat length. This heterogeneity does not support the strict sequence conservation implied by the library hypothesis, which claims a functional role in speciation for the rigid conservation of satellite DNA sequences (Fry and Salser, 1977). Furthermore the Drosophila and primate data reveal that satellite DNAs can change rapidly, though nonrandomly, at the nucleotide sequence level in a relatively closely knit group such as the Hawaiian species, as well as in more distantly related species from amongst the primates. We draw two major conclusions. There is no universal attribute of satellite DNA sequence per se, the only biological variable to date being the amount of satellite DNA and its effects in the germ line. Many aspects of satellite DNA evolution conform to Kimura's (1979) concepts of neutrality.  相似文献   

12.
13.
Nuclear satellite DNAs of yeast   总被引:6,自引:0,他引:6  
  相似文献   

14.
15.
The lower amount of 5 methylcytosine in DNA from bull sperm relative to DNA of other bovine tissues is a result of the absence of this minor base from several of the satellite DNAs in sperm. This applies particularly to the 1.715, 1.711b and 1.709 satellites and less so to the 1.706 and 1.711a satellites. Mouse sperm DNA is also partially undermethylated.  相似文献   

16.
Comparative analysis of different satellite DNAs in four Mytilus species.   总被引:1,自引:0,他引:1  
We report the characterization of three satellite DNAs in four species of mussel: Mytilus edulis, Mytilus galloprovincialis, Mytilus trossulus, and Mytilus californianus. The monomers of the Apa I satellite DNAs were 173, 161, and 166 bp long. These satellite monomers were used to construct phylogenetic trees to infer relationships among these species. The topologies obtained clearly indicate that M. californianus is the most divergent species with respect to the other three. Furthermore, localization of satellite DNAs on metaphase chromosomes was performed using fluorescent in situ hybridization (FISH). Fluorescent signals revealed a different organization and distribution of these three satellite DNAs.  相似文献   

17.
18.
Quantitative variation and chromosomal location of satellite DNAs   总被引:1,自引:0,他引:1  
  相似文献   

19.
The satellite I DNAs of domestic goat (Capra hircus) and domestic sheep (Ovis aries) have been studied using molecular hybridisation and restriction enzyme analysis. Both satellite DNAs are composed of repeat units of 820 base pairs in length, but their restriction maps, although similar, differ in certain respects. Thus the majority of sheep satellite I repeat units have two EcoRI sites and one AluI site, whereas the majority of goat satellite I repeat units have one EcoRI site and two AluI sites. The sheep satellite I repeat units with the two EcoRI sites are much more homogeneous than the repeats forming the remainder of the satellite, as judged by the difference in the melting temperatures of native and reassociated molecules. DNAs from species of wild sheep and goats were screened for the presence of these repeat units, and they appear to have been amplified during the radiation of the Ovis genus. Goat satellite I is composed of a single sequence type which has changed through base substitution until the sequence now shows considerable heterogeneity. It is proposed that the major sequence types of these two satellite DNAs were amplified by different saltatory replication events at different times in the evolution of the group.  相似文献   

20.
Heterochromatic chromosomes and satellite DNAs of Drosophila nasutoides   总被引:5,自引:5,他引:0  
Drosophila nasutoides is distinguished from other Drosophila species in that the metaphase karyotype shows a pair of very large V-shaped chromosomes. With Giemsa, a distinctive C-banding pattern is revealed along the arms of this large chromosome, indicating a largely heterochromatic nature. Furthermore, the banding patterns of the arms are symmetrical, indicating that it is an iso-chromosome. A comparison between the metaphase karyotype and polytene chromosomes suggests that the large V chromosome appears as the dot chromosome in polytene squash. One autosome has twice the arm length of typical Drosophila polytene chromosomes and arose either by centric fusion and a pericentric inversion, or by translocation connecting distal ends with a subsequent loss of one centromere. This chromosome appears to have a short arm which ectopically pairs with the proximal region of the long arm, representing a duplication of about ten bands. When the nuclear DNA is examined by neutral CsCl gradient, four satellites are observed. As much as sixty percent of the total DNA appears as satellites in the lysate of larval brains. No satellite was detectable in the lysate of salivary glands. These observations led us to suggest that the heterochromatic nature of the large V chromosome is due to the presence of all four satellites in this chromosome and that this large chromosome appears as the dot because of the under-reduplication of the satellites during polytenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号