首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Soberon  L Covarrubias  F Bolivar 《Gene》1980,9(3-4):287-305
In vitro recombinant DNA experiments involving restriction endonuclease fragments derived from the plasmids pBR322 and pBR325 resulted in the construction of two new cloning vehicles. One of these plasmids, designated pBR327, was obtained after an EcoRII partial digestion of pBR322. The plasmid pBR327 confers resistance to tetracycline and ampicillin, contains 3273 base pairs (bp) and therefore is 1089 bp smaller than pBR322. The other newly constructed vector, which has been designated pBR328, confers resistance to chloramphenicol as well as the two former antibiotics. This plasmid contains unique HindIII, BamHI and SalI sites in the tetracycline resistance gene, unique PvuI and PstI sites in the ampicillin resistance gene and unique EcoRI, PvuII and BalI sites in the chloramphenicol resistance gene. The pBR328 plasmid contains approx. 4900 bp.  相似文献   

2.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

3.
4.
Stability of pBR322 and pBR327 plasmids was studied. Plasmid-containing Escherichia coli strains were grown in liquid growth medium without selection pressure. Plasmid pBR327 was shown to be more stable in E. coli CSH54 cells than pBR322. Essential heterogenity of individual plasmid-containing clones was recognized by the maintenance stability of plasmid DNA. The indicated clones with high stability failed to be cured from pBR327 plasmid by means of acridine orange. High stability of plasmid maintenance and the failure to cure cells containing this plasmid are suggested to correlate with and to be essentially determined by the cell functions.  相似文献   

5.
The putative clindamycin resistance region of the Bacteroides fragilis R plasmid pBF4 was cloned in the vector R300B in Escherichia coli. This 3.8-kb EcoRI D fragment from pBF4 expressed noninducible tetracycline resistance in E. coli under aerobic but not anaerobic growth conditions. The fragment does not express tetracycline resistance in Bacteroides, a strict anaerobe. The separate tetracycline resistance transfer system in the Bacteroides host strain V479-1 has no homology to the cryptic determinant on pBF4. In addition, this aerobic tetracycline resistance determinant is not homologous to the three major plasmid mediated tetracycline resistance regions found in facultative gram-negative bacteria, represented by R100, RK2, and pBR322. A similar cryptic tetracycline resistance fragment was cloned from pCP1, a separate clindamycin resistance plasmid from Bacteroides that shares homology with the EcoRI D fragment of pBF4. This study identifies cryptic drug resistance determinants in Bacteroides that are expressed when inserted into an aerobically growing organism.  相似文献   

6.
The two HindIII fragments of polyoma virus DNA were cloned in the HindIII site of plasmid pBR322, a site located in the RNA polymerase promoter involved in the expression of tetracycline resistance. Although insertion of foreign DNA into this site did not always result in the complete loss of tetracycline resistance, Escherichia coli K12 strain chi 1776 harbouring recombinant plasmids exhibited reduced growth properties in liquid culture with tetracycline and could easily be differentiated from bacteria transformed by non-recombinant plasmids. The formation of plasmid multimers increased the resistance to tetracycline at the level of the induction period, presumably as a result of a gene dosage effect.  相似文献   

7.
Stability of ColE1-like and pBR322-like plasmids in Escherichia coli   总被引:1,自引:0,他引:1  
The average copy number, the level of ampicillin resistance conferred by one plasmid, and the degree of plasmid multimerization were determined for several ColE1-like and pBR322-like plasmids. From the results obtained, the variance of the units of partition corresponding to each plasmid studied was calculated. Experimentally determined plasmid stability was compared with that calculated using the variance of the units of partition and the ratio between the generation times of plasmid-free and of plasmid-carrying cells, assuming that the units of partition are distributed randomly between daughter cells. Stability of the pBR322-like plasmids present mainly as monomers in the bacterial host was consistent with random partitioning, whereas pBR322-like plasmids, present mainly as dimers, and the ColE1-like plasmid showed greater stability than that predicted with random partitioning at cell division.  相似文献   

8.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

9.
The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.  相似文献   

10.
Efficient transformation of Serratia marcescens with pBR322 plasmid DNA   总被引:10,自引:0,他引:10  
J D Reid  S D Stoufer  D M Ogrydziak 《Gene》1982,17(1):107-112
Eight Serratia marcescens strains tested could be transformed with the plasmid pBR322. Transformants were selected on the basis of resistance to high levels of ampicillin (400 to 500 micrograms/ml). For six of the strains, the CaCl2- mediated transformation procedure developed for Escherichia coli was successful. For the other two strains, no transformants were obtained with the CaCl2-mediated transformation procedure unless the cells first received a heat treatment. Transformation frequency was dependent on DNA concentration, and no transformation was detected with linear pBR322 DNA. The stability and copy number of pBR322 were similar in S. marcescens and E. coli. As in E. coli, the pBR322 DNA was amplified in S. marcescens after inhibition of proteins synthesis. Based on these results, cloning in S. marcescens should be possible and pBR322 should be a useful cloning vehicle.  相似文献   

11.
Versatile cloning vector for Pseudomonas aeruginosa.   总被引:6,自引:5,他引:1       下载免费PDF全文
A pBR322:RSF1010 composite plasmid, constructed in vitro, was used as a cloning vector in Pseudomonas aeruginosa. This nonamplifiable plasmid, pMW79, has a molecular weight of 8.4 X 10(6) and exists as a multicopy plasmid in both P. aeruginosa and Escherichia coli. In P. aeruginosa strain PAO2003, pMW79 conferred resistance to carbenicillin and tetracycline. Characterization of pMW79 with restriction enzymes revealed that four enzymes (BamHI, SalI, HindIII, and HpaI) cleaved the plasmid at unique restriction sites. Cloning P. aeruginosa chromosomal deoxyribonucleic acid fragments into the BamHI or SalI site of pMW79 inactivated the tetracycline resistance gene. Thus, cells carrying recombinant plasmids could be identified by their carbenicillin resistance, tetracycline sensitivity phenotype. Deoxyribonucleic acid fragments of approximately 0.5 to 7.0 megadaltons were inserted into pMW79, and the recombinant plasmids were stably maintained in a recombination-deficient (recA) P. aeruginosa host.  相似文献   

12.
pNZ500 is a 1.5 kb cryptic plasmid from a Shigella sonnei isolate. It was introduced into Escherichia coli by cotransformation, where it is maintained at about 30 copies per chromosome equivalent. Hybridization studies show that pNZ500 exhibits a high level of sequence similarity to other 1.5 kb plasmids found in different S. sonnei isolates but shares no homology with larger S. sonnei plasmids. pNZ500 shares a small degree of sequence homology with pBR322 and with pAC184. The homology with pBR322 is restricted to sequences close to the ori-bom region of this plasmid. Nevertheless, pNZ500 maintenance in E. coli is not dependent on DNA polymerase I activity, and does depend on continuing protein synthesis. pNZ500 encodes two polypeptide gene products whose monomer molecular weights are 24500 and 18000. The examination of host cells for the expression of possible plasmid phenotypes revealed no differences between cells bearing pNZ500 and plasmidless cells.  相似文献   

13.
14.
Abstract The generalized transducing phage P1 grew well on heterozygous Escherichia coli carrying recA srlC 300::Tn 10 on the chromosome and recA + on a pBR322-derived plasmid. Because of the close linkage of Tn 10 to recA mutations, including recA 1, recA 13, recA 56, recA deletion and recA allele of E. coli BNG30, the latter can be moved to other strains in transductional crosses for selective resistance to tetracycline.  相似文献   

15.
A gene (gshI) responsible for gamma-glutamylcysteine synthetase (GSH-I) activity was cloned to construct an Escherichia coli B strain having high glutathione synthesizing activity. For this purpose, two E. coli B mutants (strains C912 and RC912) were used. C912 was deficient in GSH-I activity. RC912, a revertant of C912, had a GSH-I activity that was desensitized to feedback inhibition of reduced glutathione. To clone gshI, chromosomal DNAs of RC912 and plasmid vector pBR322 were digested with various restriction endonucleases and then ligated with T4 DNA ligase. The whole ligation mixture was used to transform C912, and the transformants were selected as tetramethylthiuramdisulfide-resistant colonies. Of about 20 resistant colonies, 2 or 3 became red when treated with nitroprusside and showed appreciably high GSH-I activities. The chimeric plasmid DNA, designated pBR322-gshI, was isolated from the strain having the highest GSH-I activity and transformed into RC912. The structure and molecular size of pBR322-gshI in RC912 were determined. The molecular size of this plasmid was 6.2 megadaltons, and the plasmid contained a 3.4-megadalton segment derived from RC912 chromosomal DNA, which included gshI gene. The GSH-I activity of RC912 cells containing pBR322-gshI was fourfold higher than that of RC912 cells without pBR322-gshI.  相似文献   

16.
A gene (gshI) responsible for gamma-glutamylcysteine synthetase (GSH-I) activity was cloned to construct an Escherichia coli B strain having high glutathione synthesizing activity. For this purpose, two E. coli B mutants (strains C912 and RC912) were used. C912 was deficient in GSH-I activity. RC912, a revertant of C912, had a GSH-I activity that was desensitized to feedback inhibition of reduced glutathione. To clone gshI, chromosomal DNAs of RC912 and plasmid vector pBR322 were digested with various restriction endonucleases and then ligated with T4 DNA ligase. The whole ligation mixture was used to transform C912, and the transformants were selected as tetramethylthiuramdisulfide-resistant colonies. Of about 20 resistant colonies, 2 or 3 became red when treated with nitroprusside and showed appreciably high GSH-I activities. The chimeric plasmid DNA, designated pBR322-gshI, was isolated from the strain having the highest GSH-I activity and transformed into RC912. The structure and molecular size of pBR322-gshI in RC912 were determined. The molecular size of this plasmid was 6.2 megadaltons, and the plasmid contained a 3.4-megadalton segment derived from RC912 chromosomal DNA, which included gshI gene. The GSH-I activity of RC912 cells containing pBR322-gshI was fourfold higher than that of RC912 cells without pBR322-gshI.  相似文献   

17.
A 140 base-pair DNA segment situated just upstream of the kanamycin resistance gene of transposon Tn2350, a transposon carried by the plasmid R1, was found to act as an origin of replication and allow autonomous replication of a plasmid composed only of the segment and of the tetracycline resistance gene of pBR322. This segment also promotes site-specific recombination: when cloned in pBR322 it promotes multimer formation in a recA- strain. If two copies are cloned on the same plasmid they promote either deletion or inversion of the intervening region, depending on their orientation relative to each other. DNA gyrase seems to be involved in this process since the inversion rate, in a plasmid carrying sequences in opposite orientations, varies in different nalidixic acid-resistant strains (gyr A mutants) independently isolated.  相似文献   

18.
Tetracycline resistance determined by pBR322 is mediated by one polypeptide   总被引:11,自引:0,他引:11  
K Backman  H W Boyer 《Gene》1983,26(2-3):197-203
Only one polypeptide specified by plasmid pBR322 is necessary to determine tetracycline resistance. Small deletions in pBR322 constructed in vitro which result in the lack of ability to confer tetracycline resistance in vivo also result in the absence or alteration of this polypeptide in vivo. Other deletions define the extent of material necessary to encode this polypeptide. A correction to the DNA sequence of the tetracycline resistance cistron has been determined which confirms these observations.  相似文献   

19.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

20.
Shuttle plasmids for Escherichia coli and Clostridium perfringens.   总被引:7,自引:2,他引:5       下载免费PDF全文
Small plasmids which replicate in both Escherichia coli and Clostridium perfringens were made by recombining E. coli plasmid pBR322 with three different small (less than 4 kilobases) plasmids native to C. perfringens. Subsequently, two homologous, though distinct, tetracycline resistance determinants (tet) from other C. perfringens plasmids were cloned into them. Both tet systems made E. coli resistant to at least 5 micrograms of tetracycline per ml when resident on the shuttle plasmids. The shuttle vectors have been used to transform L-phase variants and autoplasts of C. perfringens. In the latter case, the intact transforming plasmid could be isolated from walled cells after cell wall regeneration. Reciprocal transformation experiments in which plasmid DNAs derived from E. coli or C. perfringens were used suggest that restriction barriers exist between these two organisms. The plasmids contain restriction enzyme recognition sites in locations which are useful for cloning experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号