首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Terminalia bellerica Roxb. (Belleric Myrobalan, Vern. — Baheda, Sanskrit-Vibhitaki, Family: Combretaceae) is among multipurpose tree species in India. The dried pulp of the seeds being used for the preparation of an ancient herbal formulation called Triphala (in Hindi). Seed size is considered a useful attribute for the propagation of valuable trees. The effect of seed size on seedling emergence in T. bellerica was studied under nursery conditions. Emergence of seedlings from large (mean dry weight1.18 ± 0.02 g), medium (0.95 ± 0.03 g) and small seeds (0.76 ± 0.03 g) varied significantly (LSDSin p < 0.05 = 4.12, Sin = 0.52). Higher numbers of seedlings emerged from the large seeds compared with medium and small seeds. Seed weight also correlated positively with seedling emergence in T. bellerica (r = 0.967, significant α = 0.01, df = 7). Findings of this study will be useful for mass propagation of T. bellerica and reintroduction of elites in different habitats.  相似文献   

2.
W. J. Bond  M. Honig  K. E. Maze 《Oecologia》1999,120(1):132-136
We develop a geometric model predicting that maximum seedling emergence depth should scale as the cube root of seed weight. We tested the prediction by planting seeds from 17 species ranging in weight from 0.1 to 100 mg at a variety of depths in a sand medium. The species were spread across 16 genera and 13 families, all occurring in fire-prone fynbos shrublands of South Africa. Maximum emergence depth was found to scale allometrically with seed weight with an exponent of 0.334, close to the predicted value. We used the allometry to predict recruitment response to experimentally simulated variation in fire intensity. Five species with small (<2 mg) seeds and five with large (>10 mg) seeds were planted at ≤20-mm and 40-mm depths and exposed to low and high heat treatments and a control. The allometric equation predicted that species with large seeds would be able to emerge from a depth of 40 mm but those with small seeds would not. Only 1% of 481 seedlings from small-seeded species emerged from the 40-mm planting compared with 40% of 626 seedlings from the large-seeded group. The simulated fire treatments killed seeds in shallow, but not deeper, soil layers. At simulated high fire intensities, seedling emergence was poor in small-seeded species but good in large-seeded species, with most seedlings emerging from the 40-mm planting depth. Seed size could be a useful general predictor of recruitment success under different fire intensities in this system. We suggest that allometric relationships in plants deserve wider attention as predictive tools. Received: 28 September 1998 / Accepted: 3 March 1999  相似文献   

3.
4.
Aims Spatial distribution of adult trees in a forest community is determined by patterns of both seed dispersal and seedling recruitment. The objectives of our study were to understand the processes of seed dispersal and seedling recruitment of dominant tree species in a temperate forest of northeastern China and to identify the factors constraining seed dispersal and seedling establishment at different stages of forest succession.Methods During three summer and autumn sessions between 2006 and 2008, altogether 113080 seeds from 22 different tree species were collected in three large field plots representing different forest types in the Changbai Mountain region of northeastern China. The spatial distribution of seed abundance was analyzed using a Syrjala test. Regeneration success of nine major tree species was assessed using variables defining 'limitations' in 'seeds' and 'seedling establishment'.Important findings We found that seed production fluctuated between years and varied greatly with forest types. Four tree species, Acer spp., Fraxinus mandshurica, Tilia amurensis and Betula spp., had the greatest seed production and the widest range of seed dispersal, whereas Quercus mongolica showed the most sustained seed production pattern. The spatial patterns of seed abundance differed significantly among forest types and years. The tree species investigated in this study differed in the degree of seed limitation, as well as in limitation of seedling establishment. There were both negative and positive correlations between seed density and seedling density, depending on site and parental tree density. Seeds of 16 tree species were found in the Populus davidiana–Betula platyphylla forest (PBF) plot, 11 in the conifer and broad-leaved mixed forest (CBF) plot but only 8 in the broad-leaved-Korean pine mixed forest (BKF) plot. The number of seed-contributing species was not only greater in the secondary forests (CBF and PBF plots) than in the primary forest (BKF plot) but was also more variable during the 3 years of assessment. Results from the correlations between seed density and seedling occurrence and that between parental tree density or seed weight and dispersal limitation confirm our intuitive expectations, i.e. heavy seeds had greater dispersal limitation but higher establishment success than light seeds.  相似文献   

5.
6.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

7.
Seeds of 11 species of Leguminosae were collected, usually in each of 3 years, and mixed with the top 7·5 cm of sterilised soil confined in cylinders sunk in the ground outdoors and cultivated three times yearly. Emergence was recorded for at least 3 yr. Some seedlings of all species emerged soon after sowing but their numbers varied both within and between species, a probable reflection of the percentage of ‘hard’ seeds in the samples. Appreciable numbers of seedlings appeared in the following 3 yr but few seeds remained viable and dormant after 5 yr. The annual weed Vicia hirsuta was an exception, with an average of 11% of the seeds sown still viable at this time. Most seedlings of Lotus corniculatus, Medicago lupulina, Melilotus altissima, Trifolium repens and Vicia cracca emerged in spring, V. cracca rather later than the others. In contrast, maximum emergence of Trifolium arvense, T. campestre and T. dubium took place from June to September. Limited data indicated a similar pattern for T. striatum and Lathyrus pratensis. Seedlings of Vicia hirsuta emerged from October to May but scarcely at all in summer. Although variation in the percentage of hard seeds influenced the extent of immediate germination and seed persistence, the seasonal patterns in seedling emergence of most species were found to be very consistent.  相似文献   

8.
Tree size distributions in an old-growth temperate forest   总被引:1,自引:0,他引:1  
Despite the wide variation in the structural characteristics in natural forests, tree size distribution show fundamental similarities that suggest general underlying principles. The metabolic ecology theory predicts the number of individual scales as the −2 power of tree diameter. The demographic equilibrium theory predicts tree size distribution starting from the relationship of size distributions with growth and mortality at demographic equilibrium. Several analytic predictions for tree size distributions are derived from the demographic equilibrium theory, based on different growth and mortality functions. In addition, some purely phenomenological functions, such as polynomial function, have been used to describe the tree size distributions. In this paper, we use the metabolic ecology theory, the demographic equilibrium theory and the polynomial function to predict the tree size distribution for both the whole community and each species in an old-growth temperate forest in northeastern China. The results show that metabolic ecology theory predictions for the scaling of tree abundance with diameter were unequivocally rejected in the studied forest. Although these predictions of demographic theory are the best models for most of the species in the temperate forest, the best models for some species ( Tilia amurensis , Quercus mongolica and Fraxinus mandshurica ) are compound curves (i.e. rotated sigmoid curves), best predicted by the polynomial function. Hence, the size distributions of natural forests were unlikely to be invariant and the predictive ability of general models was limited. As a result, developing a more sophisticated theory to predict tree size distributions remains a complex, yet tantalizing, challenge.  相似文献   

9.
Abstract. Seed bank spatial pattern was studied in a secondary forest dominated by Fagus sylvatica and Betula celtiberica in the Urkiola Natural Park (N Spain). Soil samples were taken every 2 m in a regular grid (196 points) and divided into two fractions (0–3 cm and 3–10 cm deep). The viable seed bank was studied by monitoring seedling emergence for ten months. The effect of different factors on seed bank composition and patterning was analysed using constrained ordination as a hypothesis testing tool. Furthermore, the existence of spatial autocorrelation was evaluated by geostatistical analysis. Seed density was high, 7057 seed.m?2, with a few species dominating. Species composition in the various layers were significantly correlated. The seed bank showed significant spatial structure, which was partially explainable by the spatial structure of the canopy and understorey vegetation. Spatial clumping from 0–8 m was observed in seed bank density and composition, mainly due to the pattern of two abundant taxa Juncus effusus and Ericaceae. The Ericaceae seed bank was related to the spatial distribution of dead stumps of Erica arborea. J. effusus was not present in the above‐ground vegetation, which indicates that its seed bank was formed in the past. As expected, the seed bank of this forest reflects its history, which is characterized by complex man‐induced perturbations. The seed bank appears to be structured as a consequence of contrasting driving forces such as canopy structure, understorey composition and structural and microhabitat features.  相似文献   

10.
Seeds of eight species of Cruciferae were collected, usually in each of 3 years, and mixed with the top 7-5 cm of sterilised soil confined in cylinders sunk in the ground outdoors and cultivated three times yearly. The seedlings emerging were recorded for 5 yr and the numbers of viable seeds remaining then determined. Emergence of Alliaria petiolata was almost entirely restricted to February and March. That of Erysimum cheiranthoides, Lepidium campestre, Sinapis arvensis and Raphanus raphanistrum took place mainly in March and April, but seedlings continued to appear until late autumn. Some seedlings of Arabidopsis thaliana, Cardamine hirsuta and Sisymbrium officinale appeared in spring, but most did so in summer (C. hirsuta and S. officinale) or early autumn (A. thaliana). Seed survival in A. petiolata was of short duration and there were few seedlings after the second year, whereas 18% of the seeds of R. raphanistrum were still present and viable after 5 yr. Seed survival at this time for the other six species ranged from 1 -6% (C. hirsuta) to 6-1% (S. arvensis).  相似文献   

11.
12.
To investigate the existence of coordinated sets of seedling traits adapted to contrasting establishment conditions, we examined evolutionary convergence in seedling traits for 299 French Guianan woody plant species and the stress response in a shadehouse of species representing seed size gradients within five major cotyledon morphology types. The French Guianan woody plant community has larger seeds than other tropical forest communities and the largest proportion of hypogeal cotyledon type (59.2%) reported for tropical forests. Yet the community includes many species with intermediate size seeds that produce seedlings with different cotyledonal morphologies. A split-plot factorial design with two light levels (0.8% and 16.1% PAR) and four damage treatments (control, seed damage, leaf damage, stem damage) was used in the shadehouse experiment. Although larger-seeded species had higher survival and slower growth, these patterns were better explained by cotyledon type than by seed mass. Even larger-seeded species with foliar cotyledons grew faster than species with reserve-type cotyledons, and survival after stem grazing was five times higher in seedlings with hypogeal cotyledons than with epigeal cotyledons. Thus, to predict seedling performance using seed size, seedling morphology must also be considered.  相似文献   

13.
Seedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment. However, studies focusing on the temporal dynamic of recruitment during these seasons are rare. This study was performed in a deciduous Mediterranean oak forest located in southern France and quantifies the impact of amplified drought conditions on autumn and winter seedling emergence and seedling mortality rates of two herbaceous plant species with meso‐Mediterranean and supra‐Mediterranean distribution (respectively, Silene italica and Silene nutans). Seedlings were followed from October 2019 to May 2020 in both undisturbed and disturbed plots where the litter and the aboveground biomass have been removed to create open microsites. Amplified drought conditions reduced seedling emergence and increased seedling mortality for both Silene species but these negative effects were dependent on soil disturbance conditions. Emergence of S. italica decreased only in undisturbed plots (−7%) whereas emergence of Snutans decreased only in disturbed plots (−10%) under amplified drought conditions. The seedling mortality rate of Sitalica was 51% higher under amplified drought conditions in undisturbed plots while that of Snutans was 38% higher in disturbed plots. Aridification due to lower precipitation in the Mediterranean region will negatively impact the seedling recruitment of these two Silene species. Climate change effects on early vital rates may likely have major negative impacts on the overall population dynamic.  相似文献   

14.
Yang X  Baskin CC  Baskin JM  Liu G  Huang Z 《PloS one》2012,7(4):e34597
The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged) were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm) and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively). Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment.  相似文献   

15.
  1. Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post​ disturbance and is triggered by a series of abiotic and biotic changes. However, the long‐term influence of different disturbance histories on patterns of seedling emergence is poorly understood.
  2. Here, we address this research gap by using an 11‐year dataset gathered between 2009 and 2020 to quantify the influence of different histories of natural (wildfire) and anthropogenic (clearcut and postfire salvage logging) disturbances on emerging seedlings in early‐successional Mountain Ash forests in southeastern Australia. We also describe patterns of seedling emergence across older successional forests varying in stand age (stands that regenerated in <1900s, 1939, 1970–90, and 2007–11).
  3. Seedling emergence was highest in the first three years post disturbance. Stand age and disturbance history significantly influenced the composition and abundance of plant seedlings. Specifically, in salvage‐logged forests, plant seedlings were the most different from similarly aged forests with other disturbance histories. For instance, relative to clearcut and unlogged, burnt forests of the same age, salvage logging had the lowest overall richness, the lowest counts of Acacia seedlings, and an absence of common species including Acacia obliquinervia, Acacia frigescens, Cassinia arcuealta, Olearia argophylla, Pimelea axiflora, Polyscias sambucifolia, and Prosanthera melissifolia over the survey period.
  4. Synthesis: Our findings provide important new insights into the influence of different disturbance histories on regenerating forests and can help predict plant community responses to future disturbances, which may influence forest recovery under altered disturbance regimes.
  相似文献   

16.
Seeds or fruits of 10 species of annual weeds were collected in each of 3 years and mixed with the top 7 · 5 cm of sterilised soil (confined in cylinders sunk in the ground outdoors and cultivated three times yearly. The numbers of seedlings emerging were recorded for 5 yr and the numbers of viable seeds remaining then determined. Emergence of Anagallis arvensis, Anchusa arvensis, Chaenorrhinum minus and Euphorbia peplus was mainly in spring; Lamium amplexicaule and Myosotis arvensis also had a spring peak but emergence continued in summer and autumn. Seedlings of Aphanes arvensis appeared almost entirely in autumn and those of Lamium purpureum between May and October. Veronica arvensis had spring and autumn peaks, while Fumaria densiflora showed no definite pattern. Except for Anagallis arvensis and F. densiflora, in which there was apparent innate dormancy due to the seed coat, most seedlings appeared in the first year with a decrease, usually exponential, from year to year. This was most rapid in C. minus and E. peplus, of which few viable seeds remained after 5 yr. Seed survival for the other species ranged from 2·6% of those sown for Anchusa arvensis to 14·8% for F. densiflora.  相似文献   

17.
Achenes of 12 species of Compositae were collected in each of 3 years and mixed with the top 7.5 cm of sterilised soil which was confined in cylinders sunk in the ground outdoors and cultivated three times yearly. Seedling emergence was recorded for 5 yr and the numbers of viable seeds remaining then determined. Emergence of Arctium lappa, A. minus, Picris hieracioides, Taraxacum officinale, Sonchus arvensis and S. asper was mainly in spring. Seedlings of Chrysanthemum segetum, Lapsana communis, Anthemis cotula and Sonchus oleraceus were often most numerous in spring but also emerged at other times, while Matricaria matricarioides and M. recutita showed no consistent seasonal pattern of emergence. Except for C. segetum and A. cotula, in which there was evidence of innate dormancy imposed by the seed coat, the numbers of seedlings were greatest in the first year and thereafter decreased approximately exponentially from year to year. Few viable seeds of A. lappa or A. minus remained after 5 yr and those of T. officinale, P. hieracioides and S. arvensis accounted for less than 1.5% of the seeds sown. Seed survival was greatest in the annual weeds and ranged from 2.1% (S. asper) to 8.6% (M. matricarioides) after 5 yr.  相似文献   

18.
Seiwa K 《Annals of botany》2007,99(3):537-544
BACKGROUND AND AIMS: In spatially heterogeneous environments, a trade-off between seedling survival and relative growth rate may promote the coexistence of plant species. In temperate forests, however, little support for this hypothesis has been found under field conditions, as compared with shade-house experiments. Performance trade-offs were examined over a large resource gradient in a temperate hardwood forest. METHODS: The relationship between seedling survival and seedling relative growth rate in mass (RGR(M)) or height (RGR(H)) was examined at three levels of canopy cover (forest understorey, FU; small gap, SG; and large gap, LG) and at two microsites within each level of canopy cover (presence or absence of leaf litter) for five deciduous broad-leaved tree species with different seed sizes. KEY RESULTS: Within each species, both RGR(M) and RGR(H) usually increased with increasing light levels (in the order FU < SG < LG), whereas little difference was observed based on the presence or absence of litter. Seedling survival in FU was negatively correlated with both RGR(M) and RGR(H) in both LG and SG. The trade-off between high-light growth and low-light survival was more evident in the relationship with LG as compared with SG. An intraspecific trade-off between survival and RGR was observed along environmental gradients in Acer mono, whereas seedlings of Betula platyphylla var. japonica survived and grew better in LG. CONCLUSIONS: The results presented here strongly support the idea of light gradient partitioning (i.e. species coexistence) in spatially heterogeneous light environments in temperate forests, and that further species diversity would be promoted by increased spatial heterogeneity. The intraspecific trade-off between survival and RGR in Acer suggests that it has broad habitat requirements, whereas Betula has narrow habitat requirements and specializes in high-light environments.  相似文献   

19.
Arbuscular mycorrhizal (AM) fungal communities can influence the species composition of plant communities. This influence may result from effects of AM on seedling recruitment, although the existing evidence is limited to experimental systems. We addressed the impact of AM fungi on the plant community composition and seedling recruitment of two species – Oxalis acetosella and Prunella vulgaris – in a temperate forest understory. We established a field experiment over two years in which soil fertility (using fertilizer to enhance and sucrose to decrease fertility) and the activity of AM fungi (using fungicide) was manipulated in a factorial design. Species richness, diversity and community composition of understory plants were not influenced by soil fertility or AM fungal activity treatments. However, plant community composition was marginally significantly affected by the interaction of these treatments as the effect of AM fungal activity became evident under enhanced soil fertility. Suppression of AM fungal activity combined with decreased soil fertility increased the number of shoots of herbaceous plants. Unchanged activity of AM fungi enhanced the growth of O. acetosella seedlings under decreased soil fertility, but did not influence the growth of P. vulgaris seedlings. We conclude that the role of AM fungi in structuring plant communities depends on soil fertility. AM fungi can have a strong influence on seedling recruitment, especially for those plants that are characteristic of the habitat.  相似文献   

20.
Abstract. Composition and density of the soil seed banks, together with seedling emergence in the field, were examined on Svalbard. 1213 soil samples were collected from six drymesic habitats in three regions representing various stages of colonization from bare moraines to full vegetation cover and spanning a range of typical nutrient and thermal regimes. Of the 165 vascular plant species native to Svalbard, 72 were present as mature plants at the study sites and of these 70% germinated seed. Proglacial soil had 12 seedlings per m2, disturbed Dryas heath 131, intact Dryas heath 91, polar heath 715, thermophilic heath 3113, and a bird cliff 10437 seedlings. Highest seed bank species richness was at the thermophilic heath (26 species). Seedlings of 27 species emerged in the field, with fewer seedlings in disturbed habitats (60 seedlings per m2) than in intact Dryas heath (142), suggesting that an absence of ‘safe sites’ limited seedling establishment in disturbed habitats. Measurement of seedling emergence in the field increased awareness of which species are able to germinate naturally. This may be underestimated by up to 31% if greenhouse trials alone are used, owing partly to unsuitability of greenhouse conditions for germination of some species and also to practical limitations of amount of soil sampled. Most thermophilic species failed to germinate and some species present at several sites only germinated from the thermophilic heath seed bank, suggesting that climate constrains recruitment from seeds in the High Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号