首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
From the Kimmeridgian (Upper Jurassic) of Portugal, the coralline sponge Sobralispongia densespiculata nov. gen. and nov. sp. is described. Main characteristics are a crustose habit, a primary spicule skeleton of very densely packed styles and subtylostyles arranged in a plumose architecture, microscleres of possibly aster-type, and a microgranular to fibrous secondary calcareous skeleton. The primary mineralogy of the calcareous skeleton was probably high-Mg calcitic. An assignment to the demosponge Order Axinellida is proposed.  相似文献   

4.
The aim of this paper was (1) to update sponge diversity and distribution in the Mediterranean and (2) to re-examine faunal relationships among the Mediterranean areas on the basis of their sponge fauna. The Mediterranean demosponge faunal list was updated to 629 species by taking into consideration recent data from previously poorly studied areas. The species lists of 14 Mediterranean areas were compared on the basis of their sponge species richness, species composition, and taxonomic relatedness of species using multivariate analyses and diversity measures, such as PD, Delta+, and Lambda+. The 14 Mediterranean areas examined for their diversity and affinities were assembled into four major zoogeographic groups: the northwestern, northeastern, the central zone, and southeastern areas. Richest in species numbers were the areas belonging to the two northern groups. The species richness comparisons and similarity analyses performed at the generic level showed that it can be safely used as a surrogate for sponge species diversity in the Mediterranean. The results of this study showed that the simple traditional division of the Mediterranean Sea into a western, central, and eastern basin cannot reliably describe the distribution of sponges in the area. Thus, the W to E faunal decline previously presented for several faunal groups shifts to a general NNW-SSE pattern when one examines separately the northern and the southern parts of the traditional basins. This gradient seems to be in agreement with differences in key environmental variables, such as latitude, salinity, temperature, and water circulation, besides the typically examined distance from Gibraltar. Handling editor: T. P. Crowe  相似文献   

5.
盐碱地微生物类群的多样性   总被引:1,自引:0,他引:1  
周宁一 《微生物学通报》2012,39(7):1030-1030
土壤是微生物的大本营,由于土壤理化性质的不同,与环境相适应的土壤微生物种类也各不相同。土壤盐碱化是一个世界性的难题,在我国主要分布在淮河以北、西北及新疆、青藏高原等内陆干旱、半干旱地区的河流冲积平原、盆地和湖泊沼泽地区。  相似文献   

6.
青藏高原微生物多样性研究   总被引:4,自引:0,他引:4  
周宁一 《微生物学通报》2014,41(11):2378-2378
正青藏高原被誉为世界屋脊,其内部除平原外还有许多山峰、冰川、高山湖泊和高山沼泽,是生态环境最为奇特、生物资源最为丰富的自然资源宝库之一。同时,青藏高原的微生物群落结构及其多样性与其他区域存在巨大差异,因而具有极高的科学研究价值,并逐渐被人们所关注。研究发现气候变化对青藏高原高寒草地生态系统草丛-地境界面微生物会产生重要的影响[1]。冰川雪藻的研究主要在南部的Yala冰川开展,  相似文献   

7.
Noyer C  Thomas OP  Becerro MA 《PloS one》2011,6(6):e20844
The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.  相似文献   

8.
周宁一 《微生物学通报》2014,41(5):1028-1028
<正>土壤重金属污染是指人类活动将重金属混入到土壤中,致使土壤中重金属含量明显高于原有含量,并造成生态环境质量恶化的现象[1]。污染土壤的重金属主要包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和类金属砷(As)等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。除了来自农药、废水、污泥和  相似文献   

9.
为了研究生物造粒流化床污水处理反应器颗粒污泥的微生物种群多样性,分别从生物造粒流化床10、60和110cm处取颗粒污泥,通过细胞裂解直接提取颗粒污泥细菌基因组DNA,PCR扩增后经变性梯度凝胶电泳(DGGE)分离,获得微生物群落的DNA特征指纹图谱,对特征条带进行序列测定及序列同源性分析。16S rRNA序列分析表明,获得的18个OTUs均属于细菌域,其中61%属于变形菌,17%属于放线菌,11%属于低G C革兰氏阳性菌,11%属于其它未知细菌。  相似文献   

10.
The aim of this study was to investigate the diversity and variability of bacterial communities associated with the marine sponge Halichondria panicea with respect to tissue compartmentalization as well as seasonal and small-scale geographic variation. Diversity of microorganisms in sponges was investigated recently, but work on the variability and succession of associated bacterial communities is rare. Despite some information on Pacific and Mediterranean sponges, it is still uncertain whether bacteria and sponges are specifically associated. In this study, H. panicea specimens were sampled throughout the year at different stations around the island of Helgoland (North Sea) and investigated using molecular tools. The bacterial community associated with H. panicea was diverse, consisting of one denaturing gradient gel electrophoresis (DGGE) band occurring in most 'tissue' samples and additional variable bands. Variability was observed between different sponge fractions (i.e. the aquiferous system and the 'tissue'), sampling locations, and sampling dates. A PCR-DGGE specific for the Roseobacter group of marine Alphaproteobacteria displayed low diversity and a marked similarity between all samples. Phylogenetic analysis also pointed to specific Alphaproteobacteria of the Roseobacter group, which was predominant in most sponge 'tissue' samples. We conclude that H. panicea harbour a specific Roseobacter population with varying bacterial co-populations occurring seasonally or on a small-scale geographically, sometimes even dominating the bacterial community.  相似文献   

11.
12.
13.
Marine multi-cellular organisms are described as sources of many newly discovered bioactive compounds. Meanwhile, it has been demonstrated repeatedly for several natural products of reputed multicellular origin that they are, in fact, produced by endophytic unicellular organisms—such as microbial fungi or bacteria. Consequently, while studying compounds isolated from a living organism, it is essential to ensure that the sample integrity is not compromised. To test the diversity of the endobiome from Alcyonium digitatum, a cold water coral found along the Atlantic coasts of the northern hemisphere, we performed a culture dependent surveyed using a phylogenetic approach. A 1 cm3 cube from the interior tissue of A. digitatum was excised under aseptic conditions, homogenized, spread onto agar-based growth medium plates and incubated in 22 °C to promote microbial growth. Colonies were transferred to secondary medium plates, incubated, and after harvesting lysed using sterile water to release DNA. 16S and 23S rDNA regions were amplified using PCR, and sequenced for systematic evaluation using phylogenetic analysis. From this survey we identified a broad selection of bacteria, predominantly of the α-proteobacterial, bacteriodete, actinobacterial and firmicute lineages, demonstrating a significant biodiversity of the coral bacterial endobiome.  相似文献   

14.
Microbial diversity of cellulose hydrolysis   总被引:4,自引:0,他引:4  
Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still not clearly understood even though there is a great deal of information available about the bovine rumen. Two major problems that limit our understanding of this area are the vast diversity of organisms present in most cellulose degrading environments and the inability to culture most of them.  相似文献   

15.
Microbial diversity of soda lakes   总被引:9,自引:3,他引:6  
Soda lakes are highly alkaline extreme environments that form in closed drainage basins exposed to high evaporation rates. Because of the scarcity of Mg2+ and Ca2+ in the water chemistry, the lakes become enriched in CO3 2− and Cl, with pHs in the range 8 to >12. Although there is a clear difference in prokaryotic communities between the hypersaline lakes where NaCl concentrations are >15% w/v and more dilute waters, i.e., NaCl concentrations about 5% w/v, photosynthetic primary production appears to be the basis of all nutrient recycling. In both the aerobic and anaerobic microbial communities the major trophic groups responsible for cycling of carbon and sulfur have in general been identified. Systematic studies have shown that the microbes are alkaliphilic and many represent separate lineages within accepted taxa, while others show no strong relationship to known prokaryotes. Although alkaliphiles are widespread it seems probable that these organisms, especially those unique to the hypersaline lakes, evolved separately within an alkaline environment. Although present-day soda lakes are geologically quite recent, they have probably existed since archaean times, permitting the evolution of independent communities of alkaliphiles since an early period in the Earth's history. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

16.
Microbial diversity, numbers, and metabolic activities in Minnesota peatlands were investigated using a variety of microbial enrichment and enumeration procedures together with radioisotopic measurements of microbial degradative processes. Minnesota peatlands were shown to contain large microbial populations of wide metabolic diversity. Direct counts of bacteria using epifluorescence microscopy indicated bacterial populations of about 108 ml–1 of peatland water, irrespective of depth. Radioisotopic most-probable-number (MPN) counts of heterotrophs able to mineralize14C-labeled substrates to14CO2 showed significant populations of glucose degraders (104–106 ml–1) as well as degraders of benzoate (102–103 ml–1), 2,4-dichlorophenoxyacetate (102–105 ml–1), and sphagnum (103–107 ml–1) in the various peatlands examined. The MPNs of NO3 reducers varied from 103–106 ml–1, SO4 reducers from 102–103 ml–1, methanogenic bacteria from 103–106 ml–1, and methane oxidizers from 103–104 ml–1, depending on sampling site and depth. Eighty pure cultures of aerobic bacteria and fungi were isolated from Minnesota peats. Most of those cultures tested were able to grow on at least 20 organic compounds (carbohydrates, aromatic molecules, hydrocarbons, etc.) as sole sources of carbon and energy. One isolate, aBacillus, was able to fix atmospheric N2. Several of the isolates were able to mineralize14C-labeled lignin.  相似文献   

17.
【目的】研究普氏蹄蝠(Hipposideros pratti)胃肠道菌群多样性及致病菌的种类。【方法】采用Mi Seq高通量测序技术,通过对16S r RNA基因V1-V2区基因进行测序,研究普氏蹄蝠胃肠道细菌的群落组成。应用MG-RAST V3.3.6分析和统计样品序列和操作分类单元(OTU)数目,分析胃肠道菌群物种丰度,并进行聚类分析。【结果】从普氏蹄蝠胃和肠道中分别获得144 998条和275 274条原始序列以及48 332条和91 758条有效序列,分属于894个和756个操作分类单元。胃中菌群丰度指数Chao指数(1 490)和ACE指数(2 221)分别低于肠道菌群的Chao指数(2 051)和ACE指数(3 556);Shannon多样性指数(2.405)低于肠道(2.407);Simpson多样性指数(0.168)高于肠道(0.151)。系统进化分析表明胃肠中的细菌主要分布在6个门,均以变形菌门(Proteobacteria)(胃中占56.4%,肠中占46.0%)和厚壁菌门(Firmicutes)(胃中占40.7%,肠中占49.2%)为优势菌门。胃肠道中丰度在0.1%以上的属有24个,胃中优势类群为乳球菌属(Lactococcus)和哈夫尼菌属(Hafnia),分别占整个菌群的26.1%和21.0%;肠道中优势类群为肠球菌属(Enterococcus)和沙门氏菌属(Salmonella),分别占整个菌群的15.2%和12.7%。普氏蹄蝠胃肠道中的优势菌群均为人类的致病菌或者条件致病菌。【结论】普氏蹄蝠携带有大量人类致病菌。因此,应注意防止向人类传播。  相似文献   

18.
19.
啶虫脒污染下土壤微生物多样性   总被引:7,自引:0,他引:7  
姚晓华  闵航  袁海平 《生态学报》2006,26(9):3074-3080
避开传统的分离培养过程,采用现代分子生物学方法探讨了杀虫剂啶虫脒污染条件下旱地土壤微生物种群多样性.通过对不同培养时间、不同浓度啶虫脒污染下旱地土壤微生物进行DGGE基因多样性的分子指纹图谱分析,发现随着培养时间不同,各处理之间的土壤微生物基因多样性出现了一定的差异.但在整个试验过程中,正常田间使用浓度(0.5mg kg^-1干土)的啶虫脒对土壤微生物群落的影响不明显,DGGE图谱条带与对照没有明显差异,土壤微生物基因多样性没有明显下降,这说明在旱地中使用正常田间浓度的啶虫脒不会对微生物群落造成较大的影响,高浓度啶虫脒对土壤微生物群落基因多样性有一定的影响,但是影响时间不长.在培养第五周时,浓度为5 mg kg^-1干土的土样出现了特异性条带,为对照所没有,其他处理浓度染色暗淡.经序列比对分析,与来自土壤的Uncultured bacterium具有100﹪的相似率,可能为不可培养或未培养过的细菌种.  相似文献   

20.
Microbial symbionts of the newly described rare, biochemically active Dictyoceratid sponge, Candidaspongia flabellata (Very White Fan) found in the Australian Great Barrier Reef, are being studied in detail. The chemistry of this sponge species is distinctive, and includes a previously undescribed compound, fanolide as well as homosesterterpene and bishomoscalarane secondary metabolites (Bergquist et al., 1999). Current research is focused on assessing the diversity of the microbial community associated with this sponge. The entire culturable community of this sponge has been studied in detail. A total of 228 bacteria, 25 fungi, 3 actinomycetes and 9 cyanobacteria were isolated from 10 individuals of this sponge. Eight eubacteria (designated AB001–AB008), along with seven cyanobacteria were consistently found associated with C. flabellata and absent from the surrounding water column, suggesting that these bacteria have a specific association with the sponge. Partial 16S ribosomal RNA gene sequencing of these isolates was done for phylogenetic characterisation. Electron microscopy was also used to confirm the presence of many morphotypes of bacteria and indicated spatial arrangements of particular morphotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号