首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PCR amplifications using primers for the clustered regularly interspaced short palindromic repeats (CRISPRs)-associated gene 1 (cas1), cas2, putative (p)-cas and CRISPRs genes generated cas1, cas2, p-cas and CRISPRs genes segments with 9–28 of 28 urease-positive thermophilic Campylobacter (UPTC) isolates, respectively. The p-cas and CRISPRs genes segments were amplified with 10 of 11 and 0 of 11 urease-negative (UN) Campylobacter lari isolates, respectively. When the nucleotide sequences of the CRISPRs consensus sequence repeats of each 33–37 base pairs from the 18 Campylobacter jejuni isolates were aligned, as well as from the four C. jejuni reference and UPTC CF89-12 strains, the repeats were identified as being almost identical. Although a total of all 18 C. jejuni isolates examined gave PCR-positive signals for the CRISPRs genes, it was, interestingly, suggested that many numbers of C. lari and C. jejuni isolates may possibly carry cas but not CRISPRs genes within their CRISPRs loci. In addition, PCR amplification by using a novel primer pair of f-ClCRISPR-ladder and ClCRISPRs-R, which were novel to this study, with the UPTC CF89-12 strain was shown to be useful for the detection of the putative CRISPRs separated by the non-repetitive unique spacer regions, with the electrophoretic ladder DNA profile following 5.0 % polyacrylamide gel electrophoresis. Secondary structure models of the CRISPRs repeats were predicted with UPTC CF89-12 and two C. jejuni strains.  相似文献   

2.
3.
The superoxide dismutase (SOD) gene clusters, sodB and sodC, and their adjacent genetic loci from a urease-positive thermophilic Campylobacter (UPTC) CF89-12 strain were analyzed molecularly, and compared with those of thermophilic campylobacters. The UPTC CF89-12 strain carried sodB [structural gene 654 base pairs (bp)] and sodC (540 bp) genes, as did the Campylobacter lari RM2100 reference strain. However, the other three thermophilic Campylobacter jejuni, C. coli and C. upsaliensis reference strains carried only a single sodB gene, and no sodC. Although sodB and sodC in the UPTC strain shared relatively high nucleotide sequence similarities (92.9 % and 91.7 %, respectively) with the corresponding genes in the C. lari RM2100 strain, the sodB gene in the UPTC CF89-12 and C. lari RM2100 strains shared relatively low nucleotide sequence similarities with those in C. jejuni NCTC11168 (80.8 % and 81.7 %), C. coli RM2228 (82.0 % and 83.1 %) and C. upsaliensis RM3195 (75.9 % and 77.0 %), respectively. All PCR amplifications of sodB and sodC gene segments with 28 C. lari isolates, including 14 UPTC isolates, gave positive results. C. lari organisms were shown to carry both the sodB and sodC genes with extremely high frequency. More high-SOD activity was seen with the C. lari isolates (n?=?9), including UPTC, than was seen with the other three thermophilic Campylobacter and Helicobacter pylori organisms.  相似文献   

4.
Although the absence of intervening sequences (IVSs) within the 23S rRNA genes in Campylobacter lari isolates has been described, there are apparently no reports regarding correlations between the nucleotide sequences of 23S rRNA genes and erythromycin (Ery) susceptibility in C. lari isolates. Here, we determined the minimum inhibitory concentrations of 35 C. lari isolates [n?=?19 for urease-positive thermophilic Campylobacter (UPTC); n?=?16 urease-negative (UN) C. lari] obtained from Asia, Europe, and North America. We found that the 18 isolates were resistant to the Ery (defined as ≧8 μg/mL), and three isolates, UPTC A1, UPTC 92251, and UPTC 504, showed increased resistance (16 μg/mL). No correlations between the IVSs in the helix 45 region within the 23S rRNA gene sequences and Ery resistance were identified in the C. lari isolates examined. In addition, no point mutations occurred at any expected or putative position within the V domain in the isolates. In conclusion, antibiotic resistance against the macrolide erythromycin is mediated through an alternative pathway to that described above.  相似文献   

5.
The arsenic resistance (ars) operon from plasmid pKW301 of Acidiphilium multivorum AIU 301 was cloned and sequenced. This DNA sequence contains five genes in the following order: arsR, arsD, arsA, arsB, arsC. The predicted amino acid sequences of all of the gene products are homologous to the amino acid sequences of the ars gene products of Escherichia coli plasmid R773 and IncN plasmid R46. The ars operon cloned from A. multivorum conferred resistance to arsenate and arsenite on E. coli. Expression of the ars genes with the bacteriophage T7 RNA polymerase-promoter system allowed E. coli to overexpress ArsD, ArsA, and ArsC but not ArsR or ArsB. The apparent molecular weights of ArsD, ArsA, and ArsC were 13,000, 64,000, and 16,000, respectively. A primer extension analysis showed that the ars mRNA started at a position 19 nucleotides upstream from the arsR ATG in E. coli. Although the arsR gene of A. multivorum AIU 301 encodes a polypeptide of 84 amino acids that is smaller and less homologous than any of the other ArsR proteins, inactivation of the arsR gene resulted in constitutive expression of the ars genes, suggesting that ArsR of pKW301 controls the expression of this operon.  相似文献   

6.
7.
Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.  相似文献   

8.
9.
10.
The plasmid-encoded arsenical resistance (ars) operon produces resistance to trivalent and pentavalent salts of arsenic and antimony. The first gene in the operon, arsR, was previously shown to encode a repressor protein. A newly identified gene, arsD, is shown here to encode a regulatory protein, the ArsD protein. The gene was identified by construction of an in-frame fusion between the C-terminally truncated arsD gene and the coding region for the mature form of β-lactamase (blaM). The native arsD gene product was overexpressed and radioactively labelled as a 13kDa polypeptide. A frameshift mutation within the arsD gene resulted in elevated levels of expression of downstream ars genes. Co-expression of a wild-type arsD gene in trans with the operon containing the mutated arsD gene reduced expression of the downstream genes to wild-type levels. The presence of the arsD gene had no effect on the basal level of operon expression set by the arsR gene product, and the repression produced by the arsD gene product was not affected by inducers of the operon. The results indicate that the ArsD protein is an inducer-independent trans-acting regulatory protein.  相似文献   

11.
12.
arsR, the first gene of the Staphylococcus xylosus (pSX267) arsenic/antimonite resistance (rs) operon encodes a negative regulatory protein, ArsR, which mediates inducibility of the resistances by arsenic and antimony compounds. ArsR, which has no obvious DNA-binding motif in its primary structure, was purified from an ArsR-overproducing Escherichia coli strain and identified as a DNA-binding protein by its behaviour in gel mobility shift assays. ArsR had a specific affinity for a 312 by DNA restriction fragment carrying the ars promoter; the minimum sequence complexed by ArsR was a 75 by polymerase chain reaction (PCR) fragment, which mainly comprised the ?35 and ?10 regions of the promoter. The effect of inducers on the DNA-binding activity of ArsR was examined by in vitro induction assays; only arsenite inhibited DNA-binding of the repressor. DNase I footprinting revealed two protected regions within the promoter region, spanning 23 and 9 nucleotides, respectively. Furthermore, a new cleavage site for DNase I between the protected regions was made accessible by binding of the repressor. The footprints cover a region of three inverted repeats located between the ?35 and ?10 motifs of the ars promoter. By high resolution footprinting with the hydroxy radical, five sites of close contact between the protein and DNA were identified.  相似文献   

13.
14.
15.
16.
17.
Toxic organoarsenicals enter the environment from biogenic and anthropogenic activities such as microbial methylation of inorganic arsenic and pentavalent herbicides such as monosodium methylarsenate (MSMA or MAs(V)). Trivalent MAs(III) is considerably more toxic than arsenite or arsenate. Microbes have evolved mechanisms to detoxify organoarsenicals. We previously identified ArsV, a flavin-linked monooxygenase and demonstrated that it confers resistance to methylarsenite by oxidation to methylarsenate. The arsV gene is usually in an arsenic resistance (ars) operon controlled by an ArsR repressor and adjacent to a methylarsenite efflux gene, either arsK or a gene for a putative transporter. Here we show that Paracoccus sp. SY oxidizes methylarsenite. It has an ars operon with three genes, arsR, arsV and a transport gene termed arsW. Heterologous expression of arsV in Escherichia coli conferred resistance to MAs(III), while arsW did not. Co-expression of arsV and arsW increased resistance compared with either alone. The cells oxidized methylarsenite and accumulated less methylarsenate. Everted membrane vesicles from E. coli cells expressing arsW-accumulated methylarsenate. We propose that ArsV is a monooxygenase that oxidizes methylarsenite to methylarsenate, which is extruded by ArsW, one of only a few known pentavalent organoarsenical efflux permeases, a novel pathway of organoarsenical resistance.  相似文献   

18.
Resistance to arsenate conferred on Escherichia coli by the ars operon of plasmid R773 requires both the product of the arsC gene and reduction of arsenate to arsenate. A genetic analysis was performed to identify the source of reducing potential in vivo. in addition to the ars genes, arsenate resistance required the products of the gor gene for glutathione reductase and the gshA and gshB genes for glutathione synthesis. Mutations in the trx and grx genes for thioredoxin and glutaredoxin, respectively, had no effect on arsenate resistance. Although resistance required the arsC gene, the rate of reduction of arsenate to arsenate was nearly the same in cells lacking the ars operon. In strains deficient in glutathione biosynthesis this endogenous reduction was greatly diminished, and cells exhibited increased sensitivity to arsenate. When glutathione was supplied exogenously to such mutants, resistance was restored only to cells expressing the ars operon, and only such cells had detectable arsenate reduction after addition of glutathione. Since ArsC-catalysed reduction of arsenate provides high level resistance, physical coupling of the ArsC reaction to efflux of the resulting arsenite is hypothesised.  相似文献   

19.
A newly constructed primer pair (lari-Af/lari-Ar) designed to generate a product of the flagellin (flaA) gene for urease-negative Campylobacter lari produced a PCR amplicon of about 1700 bp for 16 isolates from 7 seagulls, 5 humans, 3 food animals and one mussel in Japan and Northern Ireland. Nucleotide sequencing and alignments of the flaA amplicons from these isolates demonstrated that the deduced amino acid sequences of the possible open reading frame were 564–572 amino acid residues in length with calculated molecular weights of 58,804 to 59,463. The deduced amino acid sequence similarity analysis strongly suggested that the ORF of the flaA from the 16 isolates showed 70–75% sequence similarities to those of Campylobacter jejuni isolates. The approximate Mr of the flagellin purified from some of the isolates of urease-negative C. lari was estimated to range from 59.6 to 61.8 kDa. Thus, flagellin from the isolates of urease-negative C. lari was shown for the first time to have a molecular size similar to those of C. jejuni and Campylobacter coli isolates, but to be different from the shorter flaA and smaller flagellin of urease-positive thermophilic Campylobacter (UPTC) isolates. Flagellins from C. lari spp., consisting of the two representative taxa of urease-negative C. lari and UPTC, thus show genotypic and phenotypic diversity.  相似文献   

20.
Arsenic, a toxic metalloid, exists in the natural environment and its organic form is approved for use as a feed additive for animal production. As a major foodborne pathogen of animal origin, Campylobacter is exposed to arsenic selection pressure in the food animal production environments. Previous studies showed that Campylobacter isolates from poultry were highly resistant to arsenic compounds and a 4-gene operon (containing arsP, arsR, arsC, and acr3) was associated with arsenic resistance in Campylobacter. However, this 4-gene operon is only present in some Campylobacter isolates and other arsenic resistance mechanisms in C. jejuni have not been characterized. In this study, we determined the role of several putative arsenic resistance genes including arsB, arsC2, and arsR3 in arsenic resistance in C. jejuni and found that arsB, but not the other two genes, contributes to the resistance to arsenite and arsenate. Inactivation of arsB in C. jejuni resulted in 8- and 4-fold reduction in the MICs of arsenite and arsenate, respectively, and complementation of the arsB mutant restored the MIC of arsenite. Additionally, overexpression of arsB in C. jejuni 11168 resulted in a 16-fold increase in the MIC of arsenite. PCR analysis of C. jejuni isolates from different animals hosts indicated that arsB and acr3 (the 4-gene operon) are widely distributed in various C. jejuni strains, suggesting that Campylobacter requires at least one of the two genes for adaptation to arsenic-containing environments. These results identify ArsB as an alternative mechanism for arsenic resistance in C. jejuni and provide new insights into the adaptive mechanisms of Campylobacter in animal food production environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号