首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The geometric and electronic structures, absorption spectra, transporting properties, chemical reactivity indices and electrostatic potentials of the planar three-coordinate organoboron compounds 1-2 and twisted reference compound Mes 3 B, have been investigated by employing density functional theory (DFT) and conceptual DFT methods to shed light on the planarity effects on the photophysical properties and the chemical reactivity. The results show that the planar compounds 1-2 exhibit significantly lower HOMO level than Mes 3 B, owing to the stronger electronic induction effect of boron centers. This feature conspicuously induces a blue shifted absorption for 1, although 1 seemingly possesses more extended conjugation framework than Mes 3 B. Importantly, the reactivity strength of the boron atoms in 1-2 is much lower than that in Mes 3 B, despite the fact that the tri-coordinate boron centers of 1-2 are completely naked. The interesting and abnormal phenomenon is caused by the strong p-π electronic interactions, that is, the empty p-orbital of boron center is partly filled by π-electron of the neighbor carbon atoms in 1-2, which are confirmed by the analysis of Laplacian of the electron density and natural bond orbitals. Furthermore, the negative electrostatic potentials of the boron centers in 1-2 also interpret that they are not the most preferred sites for incoming nucleophiles. Moreover, it is also found that the planar compounds 1-2 can act as promising electron transporting materials since the internal reorganization energies for electron are really small.
Figure
The planar effects significantly affect the frontier molecular orbital levels, absorption wavelengths, transporting properties, and chemical reactivities of compounds 1-2. The underlying origin has been revealed by density functional theory and conceptual density functional theory calculations  相似文献   

2.
In the present study we focused on the impact of macrophyte cover (composed mainly of the Lemna genus) on phytoplankton taxonomic and functional diversity. Some important environmental parameters, mainly light (KdPAR), and the chemical conditions (pH, dissolved oxygen, ammonium, soluble and total forms of phosphorus) were closely related to the pleustophyte cover. Among them, the key factor in the phytoplankton ecology of the studied oxbow lakes was the dense macrophyte cover which strongly reduced the illumination of water. Neither differences in the mean nutrient concentrations between the lakes with FFP (Free Floating Plants) absence and those with FFP dominance nor significant relationships between nutrients and the phytoplankton structure were observed. The species composition of phytoplankton and the functional (FG) and morpho-functional (MFG) groups reflected the differences between the habitats connected with hydromacrophytes. The free-floating macrophyte cover favours mixotrophic and heterotrophic species, mainly Euglenophyta (coda W1 and W2) and chrysophytes (codon Ws) as well as shade-adapted cyanobacteria with the high tolerance of the low oxygen content (codon K). In lakes with FFP absence — taxa from Chlorophyta and Bacillariophyceae (associations X1, J, and D), or filamentous cyanobacteria (codon S1) dominated the phytoplankton. MFG were less related to the oxbow type and exhibited greater similarity between lakes independently of the presence or absence of FFP. Only unicellular Cyanoprokaryota which created MFG 4 and colonial chroococcales (MFG 5b and 5c) reached a greater percentage share, especially in oxbow lakes with FFP dominance.  相似文献   

3.
Cyanoprokaryote assemblages in eight productive tropical Brazilian waters   总被引:4,自引:0,他引:4  
Huszar  V. L. M.  Silva  L. H. S.  Marinho  M.  Domingos  P.  Sant'Anna  C. L. 《Hydrobiologia》2000,424(1-3):67-77
  相似文献   

4.
In the Candida antarctica lipase B-catalyzed hydrolysis of (R,S)-azolides derived from (R,S)-N-protected proline in water-saturated methyl tert-butyl ether (MTBE), high enzyme activity with excellent enantioselectivity (V S V R ?1 ?>?100) for (R,S)-N-Cbz-proline 1,2,4-triazolide (1) and (R,S)-N-Cbz-proline 4-bromopyrazolide (2) was exploited in comparison with their corresponding methyl ester analog (3). Changing of the substrate structure, water content, solvent, and temperature was found to have profound influences on the lipase performance. On the basis of enzyme activity and enantioselectivity and solvent boiling point, the best reaction condition of using 1 as the substrate in water-saturated MTBE at 45 °C was selected and further employed for the successful resolution of (R,S)-N-Cbz-pipecolic 1,2,4-triazolide (5) and (R,S)-N-Boc-nipecotic 1,2,4-triazolide (9). Moreover, more than 89.1 % recovery of remained (R)-1 is obtainable in five cycles of enzyme reusage, when pH 7 phosphate buffers were employed as the extract at 4 °C.  相似文献   

5.
6.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

7.
Calculations performed at the ab initio level using the recently reported planar concentric π-aromatic B18H6 2+(1) [Chen Q et al. (2011) Phys Chem Chem Phys 13:20620] as a building block suggest the possible existence of a new class of B3n H m polycyclic aromatic hydroboron (PAHB) clusters—B30H8(2), B39H9 2?(3), B42H10(4/5), B48H10(6), and B72H12(7)—which appear to be the inorganic analogs of the corresponding C n H m polycyclic aromatic hydrocarbon (PAHC) molecules naphthalene C10H8, phenalenyl anion C13H9 ?, phenanthrene/anthracene C14H10, pyrene C16H10, and coronene C24H12, respectively, in a universal atomic ratio of B:C?=?3:1. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses indicate that, as they are hydrogenated fragments of a boron snub sheet [Zope RR, Baruah T (2010) Chem Phys Lett 501:193], these PAHB clusters are aromatic in nature, and exhibit the formation of islands of both σ- and π-aromaticity. The predicted ionization potentials of PAHB neutrals and electron detachment energies of small PAHB monoanions should permit them to be characterized experimentally in the future. The results obtained in this work expand the domain of planar boron-based clusters to a region well beyond B20, and experimental syntheses of these snub B3n H m clusters through partial hydrogenation of the corresponding bare B3n may open up a new area of boron chemistry parallel to that of PAHCs in carbon chemistry.
Figure
Ab initio calculations predict the existence of polycyclic aromatic hydroboron clusters as fragments of a boron snub sheet; these clusters are analogs of polycyclic aromatic hydrocarbons  相似文献   

8.
We analysed long-term changes in phytoplankton composition in relation to hydrological, meteorological and nutrient loading data in the large (270 km2) shallow (mean depth 2.8 m) Lake Võrtsjärv. Nutrient loads to the lake were heavy in the 1970s and 1980s and decreased considerably thereafter. The average nutrient concentrations for 1985–2004 (1.6 mg l?1 of total nitrogen and 53 μg l?1 of total phosphorus) characterize the lake as a eutrophic water body. All four calculated taxonomic indices showed a unidirectional deterioration of the lake’s ecological status, despite reduced concentrations of nutrients. We focused our analysis on the PTSI index, which revealed a stepwise change between the years 1977 and 1979 that coincided with a large increase in water level, but also with a change of investigator. After correcting input data for possible investigator-induced differences, the step change remained because it was caused by major changes in the whole phytoplankton community. The previous dominant Planktolyngbya limnetica was replaced by two species of seasonally altering Limnothrix. Among phytoplankton functional groups, there was a decrease in all groups comprising small-sized phytoplankton species, such as X1, E, F, J, N and an increase in S1 and H1, both represented by filamentous cyanobacteria. Our results suggest a non-linear response of phytoplankton to changing nutrient loadings, and that the change observed between 1977 and 1979 was a regime shift triggered by water level change. High shade tolerance of the new dominants, and their ability to create shade, obviously stabilized the new status making it resistant to restoration efforts.  相似文献   

9.
In the quest for complexes modelling functional characteristics of metal sulfur oxidoreductases, a series of molybdenum nitrosyl complexes with sulfur-dominated coordination sphere was synthesized. Treatment of the 16, 17 and 18 valence electron (VE) complexes [Mo(L)(NO)('S4')] (1–3) [L?=?SPh (1), PMe3 (2), NO (3), 'S4'2–?=?1,2-bis-(2-mercaptophenylthio) ethane(2-)] with the Brönsted acid HBF4 resulted in formation of different types of products. 1 and 3 were reversibly protonated at one thiolate atom of the 'S4'2– ligand;2, however, yielded the phosphonium salt [HPMe3]BF4 and the dinuclear [Mo(NO)('S4')]2. Alkylation of 1, 2 and 3 by Me3OBF4 or Et3OBF4 uniformly resulted in high yields of [Mo(L)(NO)(R-'S4')]BF4 complexes [L?=?SPh: R?=?Me (5), Et (6); L?=?PMe3: R?=?Me (7); L?=?NO: R?=?Me (8), Et (9)] in which one thiolate atom of the 'S4'2– ligand had become alkylated; the NMR spectra of 5, 6, 8 and 9 indicated that only one out of four theoretically possible diastereoisomers had formed. 5 and 6 were characterized also by single-crystal X-ray structure analyses. A comparison of ν(NO) bands and redox potentials (cyclic voltammetry) of parent complexes and alkylated derivatives showed that alkylation leads to a decrease in electron density at the molybdenum center and to a positive shift in redox potentials. The 16 VE complex 1 could be reduced, also chemically, to give the corresponding 17 VE anion [1], and inserted elemental sulfur into the Mo-SPh bond, forming the 18 VE phenylperthio complex [Mo(η2–SSPh)(NO)('S4')] (11) which, upon reaction with PPh3, gave SPPh3 and regenerated the parent complex 1. These results are discussed with regard to the sequence of proton and electron transfer steps occurring in substrate conversions catalyzed by metal sulfur oxidoreductases.  相似文献   

10.
Chiral imines 1a,b, already synthesized in our laboratory, were converted in good yield by reduction into the corresponding N-benzyl-γ-lactams 2a,b. Desilylation followed by oxidation of the hydroxymethyl functionality gave the N-benzyl-β-amino acids 5a,b in good yield and high purity. Starting from compound 6a, the corresponding β-peptoid dimer 8 was prepared, together with its derivatives 9 and 10, these latter displaying conformational restriction about the peptide bond, as evidenced by NMR data.  相似文献   

11.
In the present study we have characterized the halogen bonding in selected molecules H3N–ICF3 (1-NH 3 ), (PH3)2C–ICF3 (1-CPH 3 ), C3H7Br–(IN2H2C3)2C6H4 (2-Br), H2–(IN2H2C3)2C6H4 (2-H 2 ) and Cl–(IC6F5)2C7H10N2O5 (3-Cl), containing from one halogen bond (1-NH 3 , 1-CPH 3 ) up to four connections in 3-Cl (the two Cl–HN and two Cl–I), based on recently proposed ETS-NOCV analysis. It was found based on the NOCV-deformation density components that the halogen bonding C–X B (X-halogen atom, B-Lewis base), contains a large degree of covalent contribution (the charge transfer to X B inter-atomic region) supported further by the electron donation from base atom B to the empty σ*(C–X) orbital. Such charge transfers can be of similar importance compared to the electrostatic stabilization. Further, the covalent part of halogen bonding is due to the presence of σ-hole at outer part of halogen atom (X). ETS-NOCV approach allowed to visualize formation of the σ-hole at iodine atom of CF3I molecule. It has also been demonstrated that strongly electrophilic halogen bond donor, [C6H4(C3H2N2I)2][OTf]2, can activate chemically inert isopropyl bromide (2-Br) moiety via formation of Br–I bonding and bind the hydrogen molecule (2-H 2 ). Finally, ETS-NOCV analysis performed for 3-Cl leads to the conclusion that, in terms of the orbital-interaction component, the strength of halogen (Cl–I) bond is roughly three times more important than the hydrogen bonding (Cl–HN).
Figure
ETS-NOCV reprezentation of σ-hole at iodine together with the molecular electrostatic potential picture  相似文献   

12.
Two derivatives of 2-(4-acetylanilino)quinolines (IIIa, b) were synthesized as scaffolds for synthesis of open chalcone analogues (Va-f) through Claisen-Schmidt condensation with a set of aromatic aldehydes (IVa-d). Derivatives (Va, b) were further manipulated into cyclic ??,??-unsaturated ketones by Michael-addition of acetylacetone and ethylacetoacetate affording derivatives (VI?CVII). Deethoxycarboxylation of derivatives (VIIa, b) afforded cyclohexenons (VIIIa, b) allowing formation of a mini library of ??,??-unsaturated ketones for screening their anticancer and synergistic anticancer effect with doxorubicin using colon cancer cell line (Caco-2). Two open enones, (Vb) and (Ve), showed significant anticancer activity with IC50 of 5.0 and 2.5 ??M respectively. Only one cyclic enone, (VIa) showed synergistic anticancer activity with doxorubicin at 10 ??M.  相似文献   

13.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

14.
N-(2-Benzothiazolyl)- and N-(6-methoxy-2-benzothiazolyl)cyanoacetamides 4, 5 resulted in the reaction of 2-aminobenzothiazole 1 or its 6-methoxy derivative 2 with 1-cyanoacetyl-3,5-dimethylpyrazole 3. Both cyanoacetylamides 4 and 5 have been transformed into the corresponding 2-oxo-2H-pyrimido[2,1-b]-benzothiazole-3-carbonitrile 8 and its 8-methoxy derivative 9 by reaction with triethyl orthoformate, followed by cyclization.  相似文献   

15.
The cyclization reactions of N-methyl-N’-(2-methoxycarbonylphenyl)sulfamide (1a), N-methyl-N-(2-methoxycarbonylphenyl)-sulfamide (2a), and 2-methoxycarbonylphenylsulfamide (3a) were studied in aqueous amine buffers (butylamine, ethanolamine, morpholine, glycinamide). The dependences observed between the rate constants and buffer concentrations show that the reactions are subject to base catalysis in all the three cases, the decomposition of the tetrahedral intermediate being rate limiting. The ratio of the relative rate constants of the base catalyzed cyclizations reactions of the three derivatives is 1a: 2a: 3a = 1: 20000: 100. The logarithm of rate constants of the base catalyzed cyclization reactions was plotted against the pKa values of conjugated acids of the individual amines used as the buffers in the cyclization of compound 1a, and the value of the Brönsted coefficient obtained was about 0.1, which means that the proton transfer from the intermediate to the basic buffer component is thermodynamically favorable. The intermediate is a much weaker base, and the reaction is controlled by diffusion. The slope of an analogous dependence for compound 2a gradually decreases from values near to 0.5 to values near to zero, which means that the intermediate formed from compound 2a (pKa ≈ 9.3) has a pKa value comparable with that of the acid buffer component.  相似文献   

16.
Thiosemicarbazones have become one of the promising compounds as new clinical candidates due to their wide spectrum of pharmaceutical activities. The wide range of their biological activities depends generally on their related aldehyde or ketone groups. Here, we report the pharmacological activities of some thiosemicarbazones synthesized in this work. Benzophenone and derivatives were used with N(4)-phenyl-3-thiosemicarbazide to synthesize corresponding five thiosemicarbazones (1–5). Their structures were characterized by spectrometrical methods analysis IR, NMR 1H & 13C and MS. The compounds were then screened in vitro for their antiparasitic activity and toxicity on Trypanosoma brucei brucei and Artemia salina Leach respectively. The selectivity index of each compound was also determined. Four thiosemicarbazones such as 4, 2, 3 and 1 reveal interesting trypanocidal activities with their half inhibitory concentration (IC50) equal to 2.76, 2.83, 3.86 and 8.48 μM respectively, while compound 5 (IC50 = 12.16 μM) showed a moderate anti-trypanosomal activity on parasite. In toxicity test, except compound 1, which showed a half lethal concentration LC50 >281 μM, the others exerted toxic effect on larvae with LC50 of 5.56, 13.62, 14.55 and 42.50 μM respectively for thiosemicarbazones 4, 5, 3 and 2. In agreement to their selectivity index, which is greater than 1 (SI >1), these compounds clearly displayed significant selective pharmaceutical activities on the parasite tested. The thiosemicarbazones 2–5 that displayed significant anti-trypanosomal and cytoxicity activities are suggested to have anti-neoplastic and anti-cancer activities.  相似文献   

17.

Key message

Stripe rust resistance transferred from Thinopyrum intermedium into common wheat was controlled by a single dominant gene, which mapped to chromosome 1B near Yr26 and was designated YrL693.

Abstract

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a highly destructive disease of wheat (Triticum aestivum). Stripe rust resistance was transferred from Thinopyrum intermedium to common wheat, and the resulting introgression line (L693) exhibited all-stage resistance to the widely virulent and predominant Chinese pathotypes CYR32 and CYR33 and to the new virulent pathotype V26. There was no cytological evidence that L693 had alien chromosomal segments from Th. intermedium. Genetic analysis of stripe rust resistance was performed by crossing L693 with the susceptible line L661. F1, F2, and F2:3 populations from reciprocal crosses showed that resistance was controlled by a single dominant gene. A total 479 F2:3 lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to six publicly available and three recently developed wheat genomic SSR markers. The linked markers were localized to wheat chromosome 1B using Chinese Spring nulli-tetrasomic lines, and the resistance gene was localized to chromosome 1B based on SSR and wheat genomic information. A high-density genetic map was also produced. The pedigree, molecular marker data, and resistance response indicated that the stripe rust resistance gene in L693 is a novel gene, which was temporarily designated YrL693. The SSR markers that co-segregate with this gene (Xbarc187-1B, Xbarc187-1B-1, Xgwm18-1B, and Xgwm11-1B) have potential application in marker-assisted breeding of wheat, and YrL693 will be useful for broadening the genetic basis of stripe rust resistance in wheat.  相似文献   

18.

Key message

Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation

Abstract

As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.  相似文献   

19.
Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was ?87.6 kJ mol?1. In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CAM1'T1'M2'T2'M3a'M4a'T3a1'M5a1'T4a1'M6a'P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.
Figure
DFT study suggests that NiL4/ZnCl2 (L=PMe3) has higher catalysis than NiL4 in the synthesis of isocoumarin from phthalic anhydrides and alkynes.  相似文献   

20.
The gas phase molecular structure of a single isolated molecule of [Ag(Etnic)2NO3];1 where Etnic = Ethylnicotinate was calculated using B3LYP method. The H-bonding interaction between 1 with one (complex 2) and two (complex 3) water molecules together with the dimeric formula [Ag(Etnic)2NO3]2;4 and the tetrameric formula [Ag(Etnic)2NO3]4;5 were calculated using the same level of theory to model the effect of intermolecular interactions and molecular packing on the molecular structure of the titled complex. The H-bond dissociation energies of complexes 2 and 3 were calculated to be in the range of 12.220–14.253 and 30.106–31.055 kcal?mol?1, respectively, indicating the formation of relatively strong H-bonds between 1 and water molecules. The calculations predict bidentate nitrate ligand in the case of 1 and 2, leading to distorted tetrahedral geometry around the silver ion with longer Ag–O distances in case of 2 compared to 1, while 3 has a unidentate nitrate ligand leading to a distorted trigonal planar geometry. The packing of two [Ag(Etnic)2NO3] complex units; 4 does not affect the molecular geometry around Ag(I) ion compared to 1. In the case of 5, the two asymmetric units of the formula [Ag(Etnic)2NO3] differ in the bonding mode of the nitrate group, where the geometry around the silver ion is distorted tetrahedral in one unit and trigonal planar in the other. The calculations predicted almost no change in the charge densities at the different atomic sites except at the sites involved in the C–H?O interactions as well as at the coordinated nitrogen of the pyridine ring.
Figure
Molecular structure (left) and electrostatic potentials mapped on the electron density surface (right) calculated by DFT/B3LYP method for Etnic, and complexes 1 and 2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号