共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular src gene product detected in the freshwater sponge Spongilla lacustris. 总被引:6,自引:3,他引:6
下载免费PDF全文

Serum from Rous sarcoma virus tumor-bearing rabbits immunoprecipitated from extracts of the freshwater sponge Spongilla lacustris a tyrosine-specific protein kinase with characteristics similar to the chicken pp60c-src kinase activity. An immune competition assay confirmed the relationship between the protein from sponges and viral pp60v-src. 相似文献
3.
Amphibian larvae constitute a large fraction of the biomass of wetlands and play important roles in their energy flux and nutrient cycling. Interactions with predators and competitors affect their abundance but also their foraging behaviour, potentially leading to non-consumptive cascading effects on the whole trophic web. We experimentally tested for plastic changes in larval trophic ecology of two anuran species in response to competitors and the non-lethal presence of native and non-native predators, using stable isotope analysis. We hypothesized that tadpoles would alter their diet in the presence of competitors and native predators, and to a lesser extent or not at all in the presence of non-native predators. First, we conducted a controlled diet experiment to estimate tadpole turnover rates and discrimination factors using Pelobates cultripes and Bufo calamita. Turnover rates yielded a half-life of 15–20 days (attaining a quasi-isotopic equilibrium after 2 months), whereas discrimination factors for natural controlled diets resulted in different isotopic values essential for calibration. Second, we did an experiment with P. cultripes and Rana perezi (=Pelophylax perezi) where we manipulated the presence/absence of predators and heterospecific tadpoles using microcosms in the laboratory. We detected a significant shift in trophic status of both amphibian species in the presence of non-native crayfish: the δ15N values and macrophyte consumption of tadpoles increased, whereas their detritus consumption decreased. This suggests that tadpoles could have perceived crayfish as a predatory risk or that crayfish acted as competitors for algae and zooplankton. No dietary changes were observed in the presence of native dragonflies or when both tadpole species co-occurred. Stable isotopic analysis is an efficient way to assess variation in tadpoles’ tropic status and hence understand their role in freshwater ecosystems. Here we provide baseline isotopic information for future trophic studies and show evidence for plastic changes in tadpoles’ use of food resources under different ecological scenarios. 相似文献
4.
Summary Different antibodies against actin, tubulin and cytokeratin were utilized to demonstrate the spatial organization of the cytoskeleton in basal epithelial cells of the freshwater sponge Spongilla lacustris. Accordingly, actin is localized in a cortical layer beneath the plasma membrane and in distinct fibers within the cytoplasmic matrix. Microtubules exhibit a different distributional pattern by radiating from a perinuclear sheath and terminating at, the cell periphery; in contrast, intermediate filaments are lacking. Cytoplasmic streaming activity was studied by in-vivo staining of mitochondria and endoplasmic reticulum by means of fluorescent dyes. Single-frame analysis of such specimens revealed a regular shuttle movement of mitochondria and other small particles between the cell nucleus and the plasma membrane, which can be stopped in a reversible manner with the use of colcemid or colchicine but not with cytochalasin D. The results point to the microtubular system as a candidate for cell organelle transport, whereas the actomyosin system rather serves for changes in cellular shape and motility. 相似文献
5.
Stable carbon and nitrogen isotope ratio analyses were used to characterize the primary energy sources and trophic positions of 16 common Lake Superior wave zone invertebrate species. Isotope data from six tributary species that were taxonomically and ecologically matched with common wave zone species revealed broad energetic separation between these similarly structured benthic food webs. Previously published stable isotope data for Lake Superior wetland and pelagic food webs were used to assess the relative importance of inter-habitat energy flow within the Lake Superior ecosystem. The results of these comparisons indicate that the Lake Superior wave zone is energetically distinct from its tributaries, wetlands, and to a lesser extent from its vast pelagic realm. This information and approach should prove useful in future studies on the bioenergetics of inter-zonal migrants and other species that forage in multiple habitats within the lake and also in revealing energetic connections among terrestrial, riverine, littoral, and pelagic food webs in the coastal ecosystems of Lake Superior. 相似文献
6.
1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies).
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ13 C signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (13 C-enriched signatures) and allochthonous (13 C-depleted signatures) resources enter the food web. The migrating behaviour of fishes and shrimps between marine and freshwater during their life cycles can be followed by carbon isotopes. Here, shrimp δ13 C signatures were shown to shift from −16‰ (for juveniles under marine influence) to −24.7‰ (for adults in freshwater habitats). For resident species, δ13 C values partly reflected the species' habitat preferences along the river continuum : species living in river mouths were 13 C-enriched in comparison with those collected upstream.
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ15 N values of herbivores/detritivores were 5.0–8.4‰, omnivores 8.8–10.2‰ and carnivores 11–12.7‰.
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns. 相似文献
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns. 相似文献
7.
Erik Zeuthen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1939,26(4):537-547
Summary The osmotic pressure of the summer-sponge is about 25–30 mM NaCl. At and after gemmulation it increases to about 110 mM (in a single case 175 mM was found), due to a liberation of small organic molecules. Osmotic pressure remains constant for a time, but in January and February (i. e. before the germination) it is again reduced to the summer values. The shell allows a high hydrostatic pressure to develop and thereby prevents osmotic rupture of the gemmula. The hibernation may be divided into three periods: The prehibernation, the posthibernation and intercalated between them the hibernation proper. In the prehibernation and in the posthibernation definite changes take place in the tissue, but in the hibernation proper no changes are observed. In Nature the hibernation lasts about six months at, say, 4°, but at 22 degrees the whole hibernation will abbreviate to about 13 days.This is due to an abbreviation of all the three periods of hibernation, but whereas the pre- and the posthibernation will only be accelerated in a manner similiar to that of other physiological processes, such as processes of growth, development and metabolism, the hibernation proper will be accelerated much more, and in fact it will be almost abolished at 22°. This strange effect of temperature on hibernation proper is discussed. Since development often occurs at very low temperatures (2–5°), we may conclude that a mechanism must be present in the gemmulae which ensures development after a certain time, here 6 months. The different phases of hibernation may serve as an indicator of this mechanism. It is suggested, that the transformations taking place during prehibernation and posthibernation, and resulting in the germination of the gemmula are inhibited during hibernation proper by a substance formed in prehibernation. 相似文献
8.
9.
Summary The gemmule coat of Spongilla lacustris is histologically single-layered in the gemmules studied in this work. This single layer is comparable to the classically described internal chitinous membrane of Leveaux (1939). It has been found to contain collagen with an axial period in electron micrographs of about 120 Å and is bounded internally by a thin dense layer which is separate from the internal gemmular cells, and which may be chitinous.Gemmules of this sponge studied during March to June of 1973 respond to 230 mOsmolar solutions of small molecules by: 1. undergoing no change, in which case the substances are freely permeable to the gemmule coat and cells; 2. displaying shrinkage of the cell mass, in which case the substances are permeable to the coat but relatively impermeable to the cells; 3. displaying folding of the coat and cell mass shrinkage because the substances are relatively impermeable to both the coat and the cells; and 4. displaying complete collapse of the gemmule due to impermeability to the coat. The lipid solubility of a substance is directly related to its ability to penetrate the coat. Further, molecular size and charge are also of apparent importance.Substances which penetrate the coat and remain osmotically active (are not metabolized) inhibit hatching. Low concentrations of sodium chloride (23 mOsmolar) have been demonstrated to reversibly inhibit hatching. Higher concentrations cause irreversible damage at 20° C but have little effect at 4° C, indicating that damage is related to the metabolic level of the cells. Once hatching is stimulated by increased temperature the cells become progressively less sensitive to an increase in osmotically active substances.Inhibition of gemmule hatching can theoretically occur by: 1. an addition of solutes to the gemmular fluid, or 2. through an increase in concentration of intragemmular solutes by water withdrawal.Our results raise the question of whether the inhibition of hatching by gemmulostasine, reported by Rasmont (1965) and Rozenfeld (1970, 1971), is due to an osmotic effect rather than to a specific physiological one.Based upon the results reported here and on the work of Zeuthen (1939) and Schmidt (1970) we propose a tight coupling between the intragemmular osmotic pressure and the triggering of hatching (cell division). Any substance which increases intragemmular osmotic pressure to a large enough extent will inhibit hatching. Furthermore, it can be hypothesized that hatching is normally triggered by a decrease in osmotic pressure due to water movement into the gemmule, the movement of solutes out of the gemmule, or to a combination of these.This work was supported by a grant from the National Science Foundation (GB-37775) to T. L. S. 相似文献
10.
Although most carabids are primarily carnivorous, some carabid species are omnivorous, with mainly granivorous feeding habits during the larval and/or adult stages (granivorous carabids). This feeding habit has been established based on laboratory and field experiments; however, our knowledge of the feeding ecology of these beetles in the field is limited owing to the lack of an appropriate methodology. In this study, we tested the utility of stable isotope analysis in investigations of the feeding ecology of granivorous carabids in the field, using two closely related syntopic species, Amara chalcites and Amara congrua. We addressed two issues concerning the feeding ecology of granivorous carabids: food niche differentiation between related syntopic species during the larval stage and the effect on adult body size of supplementing seeds with an animal diet during the larval stage. To investigate larval feeding habits, we analysed newly emerged adults, most somatic tissues of which are considered of larval origin. In the two populations examined, both δ15N and δ13C were significantly higher in A. chalcites than A. congrua, suggesting that the two species differentiate food niches, with A. chalcites larvae being more carnivorous than A. congrua larvae. The two isotope ratios of A. chalcites samples from one locality were positively correlated with body size, suggesting that more carnivorous larvae become larger adults. However, this relationship was not detected in other species/locality groups. Thus, our results were inconclusive on the issue of diet supplementation. Nevertheless, overall, these results are comparable with those of previous laboratory‐rearing experiments and demonstrate the potential utility of stable isotope analysis in field studies on the feeding ecology of granivorous carabids. 相似文献
11.
Dorothe Kopp Julien Cucherousset Jari Syvranta Aurlia Martino Rgis Crghino Frdric Santoul 《Comptes rendus biologies》2009,332(8):741-746
During the last decades, non-native predatory fish species have been largely introduced in European lakes and rivers, calling for detailed information on the trophic ecology of co-existing native and non-native predators. The present study describes the trophic ecology of the introduced pikeperch (Sander lucioperca) in two southwestern French rivers, using stable isotope analysis. Pikeperch could be categorized as a top-predator, and had a significantly higher trophic position (TP, mean±SE=4.2±0.1) compared to other predatory fish such as the native pike (Esox lucius, TP=3.7±0.1) and the introduced European catfish (Silurus glanis, TP=3.8±0.1). Most studies of resource use in freshwaters consider predatory fish as ecologically equivalent; however, this study showed that the pikeperch occupied a higher trophic niche compared to other predatory species in the Lot and Tarn rivers (Garonne River basin). This apparent specialization may thus have consequences upon interspecific relationships within the predatory guild and upon the functional organization of biological communities. To cite this article: D. Kopp et al., C. R. Biologies 332 (2009). 相似文献
12.
Insights into fish host-parasite trophic relationships revealed by stable isotope analysis 总被引:2,自引:0,他引:2
Trophic relationships between 10 species of fish host and their associated nematode, cestode, and copepod parasites were investigated using stable isotopes of carbon and nitrogen. Nematodes and cestodes were consistently depleted in 15N with respect to their host, and such fractionation patterns are unlike those conventionally observed between consumers and their diets. Species of copepod parasite were sometimes depleted and sometimes enriched in 15N with respect to fish hosts, and this confirms earlier reports that the nature and magnitude of ectoparasite-host fractionations can vary. Significant differences in delta15N and delta13C were observed among fish tissues, and the isotopic signature of parasites did not always closely correspond to that of the tissue with which the parasite was found most closely associated, or on which the parasite was thought to be feeding. Several possible explanations are considered for such discrepancies, including selective feeding on specific amino acids or lipids, migration of the parasite among different fish tissues, changes in the metabolism of the parasite associated with life history and migration between different host animals. 相似文献
13.
Life cycle of Spongilla lacustris (Porifera,Spongillidae): a cue for environment-dependent phenotype
We studied the life cycle and growth of Spongilla lacustris in a stream with three distinct habitats. Sponge populations in the habitats exhibited different adaptive strategies. Growth forms of S. lacustris ranged from encrusting to digitate and branched. Environmental factors controlled the appearance of each growth form. In the most hospitable habitat, a variety of colonization strategies and different growth forms were present. In the less hospitable habitat growth was restricted to small and encrusting specimens. In the optimal habitat, the largest and most luxuriant specimens developed. Gemmulation and hatching were dephased among specimens in the three habitats; hence gemmules were present for long periods of time. S. lacustris was found capable of displaying two life strategies: r in the short run, K in the long run. 相似文献
14.
15.
16.
Uwe Saller 《Zoomorphology》1989,108(5):291-296
Summary When growing in the sunlight, some specimens of Spongilla lacustris are coloured green due to the presence of symbiotic unicellular chlorellae. The algae live inside most sponge cells. The chlorellae were extracted from green sponges, cultivated, added to algae-free sponges and fixed after different incubation times. In this way the uptake of the algae, their distribution and their final whereabouts in the mesenchymatic cells could be followed by in vivo microscopy, phase-contrast microscopy and electron microscopy. A few minutes after addition, the chlorellae can be found inside the choanocyte chambers. Here they are taken up by the cell bodies and collars of the choanocytes. Pinacocytes are also involved in the uptake. The distribution of algae results from a specific transmission from the donor cell to the receiver cell. The chlorellae are not released from their host vacuoles until they are extensively enclosed by the cell taking them up. Six hours after addition, all sponge cells contain algae except granulocytes, microscleroblasts, the pinacocytes of the peripheral rim region and those of the pinacoderm. The chlorellae are able to divide inside the sponge cells.Abbreviations
StM
Stereo-microscopical photograph
-
PhC
Phase-contrast microscopical photograph
-
EM
Electron microscopical photograph 相似文献
17.
18.
SUMMARY. The life-cycles of green and white morphs of the freshwater sponge Spongilla lacustris were examined in the light of past evidence that zoochlorellae may augment their sponge host's nutrition. Field collections from a lotic population of S. lacustris were supplemented by laboratory experiments on gemmule hatching and gemmule size. Both white and green S. lacustris produced sperm for a 6-week period in 1976 starting in the middle of May. Out of thirty white and thirty green sponges examined during this period, twenty white and ten green sponges contained sperm. Sperm production in both morphs was limited primarily to the basal 3.18mm of sponge tissue, and the density of sperm packets in the two morphs was the same. Out of 180 white and green sponges examined in 1976, only four eggs, no embryos, and no larvae were observed. White sponges gemmulated a week or two earlier, and produced smaller gemmules which were more uniform in size than those of green sponges. White and green gemmules hatched synchronously in the spring. In 1977 one female and numerous male specimens of S. lacustris , and numerous females but no males of another sponge, Eunapius fragilis , were found. The life-cycles are discussed in the light of other recent studies on freshwater sponges. 相似文献
19.
Felix Weiss Robert W. Furness Rona A. R. McGill Ian J. Strange Juan F. Masello Petra Quillfeldt 《Polar Biology》2009,32(12):1753-1763
Seabird colonies provide rare opportunities to study trophic segregation in an entire bird community. We here present data on nitrogen and carbon isotope ratios of eight species of seabirds from New Island, Falkland Islands, and compare trophic levels (TL) and foraging distributions. We included adult feathers representing the interbreeding season, as well as chick feathers or down representing the breeding season. The stable isotope ratios indicated differences in feeding areas and TLs between species, consistent with the data of previous conventional diet analyses and observations at sea. We further reviewed conventional and stable isotope seabird community studies calculating the means and ranges of TLs observed across these studies. The mean TL (3.7) of the seabird community on New Island was at the lower end of the mean value range (3.5–4.5), but not significantly different, from the reviewed seabird communities. Seabirds on New Island had a range of 1.3 TLs, which is on the upper end of ranges within a community (0.4–1.5), indicating strong trophic structuring. 相似文献
20.
The diets and trophic interactions among Weddell, crabeater, Ross, and leopard seals in the eastern Ross Sea, Antarctica, were investigated by the use of stable isotope techniques during the 1999–2000 summer seasons. The 13C and 15N values in seal serum clearly distinguished the three Antarctic pack-ice seal species at different trophic positions (Weddell>Ross>crabeater). These patterns appeared to reflect a close linkage to their known foraging ecology and diving behaviors, and agreed well with their presumed dietary diversity. The more enriched 13C and 15N values in male Weddell seals than those in females suggested differences in foraging preferences between them. Significant differences in 15N were also found among different age groups of Weddell seals. A strong correlation between the C:N ratios and serum cholesterol was probably due to extremely high cholesterol levels in phocids. Comparisons of isotope data with harbor seals revealed distinct differences between Antarctic phocids and the northern seal species. 相似文献