首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Changes of photosynthesis under blue light were examined in the ABA-overproducing 7B-1 mutant in tomato. Net photosynthetic rate (P N), stomatal conductance (g s), intrinsic water-use efficiency (WUEi) and chlorophyll (a+b) [Chl (a+b)] content in leaves of different insertion (1st, 4th and 9th ones) were measured in 5-, 7- and 9-week-old plants. P N, g s, and Chl (a+b) content were mostly similar in young leaves of 7B-1 and wild type (WT) plants. With the aging of leaves, a blue-light-induced increase in P N and g s to steady-state was delayed and steady-state values of P N and g s were lower in 7B-1 plants compared with WT. Steady-state values of WUEi were increased in 4th and 9th leaves of 7B-1 plants compared with WT. The results can be explained by the higher endogenous level of ABA in 7B-1 plants and their lower sensitivity to ABA in earlier growth stage.  相似文献   

2.
Drought stress limits wheat growth and productivity. The response of wheat (Triticum aestivum L.) to different water supply conditions (well-watered and drought-stressed) and exogenous methyl jasmonate (MeJA; 0 and 0.25 μM) was studied. The application of MeJA enhanced wheat adaptability to drought stress by physiological and metabolic adjustments. Drought stress reduced net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), and water-use efficiency (WUE) in wheat. The application of exogenous MeJA decreased also g s and E, but stimulated WUE. Meanwhile, MeJA mitigated the decline of P N, g s, and WUE induced by drought stress and midday depression by 6–183%. Both drought stress and exogenous MeJA induced stomatal closure, which improved water status and delayed plant senescence. MeJA enhanced the activities of superoxide dismutase, peroxidase, catalase, and reduced malondialdehyde content. P N-PAR response curves showed that MeJA mitigated the decline of maximum P N, apparent quantum yield, and saturation irradiance, and the increase of compensation irradiance. Drought stress and exogenous MeJA increased dark respiration rate and showed an additive effect. These results indicated that 0.25 μM MeJA enhanced the photosynthesis under drought stress mainly by improving the water status and antioxidant capacity of wheat.  相似文献   

3.
In view of predicted climatic changes for the Mediterranean region, study of high temperature and drought impacts on physiological responses of endangered species regains relevance. In this context, micropropagated plants of Tuberaria major, a critically endangered species, endemic of Algarve, were transferred to a controlled-environment cabinet with day/night temperatures set at 25/18°C (Reference) or 32/21°C (HT). After 15 days of HT acclimation, some plants were subjected to progressive drought followed by rewatering. The enhancement of temperature alone did not affect water relations and photosynthetic rates (P N) but the stomatal conductance (g s) exhibited a 3-fold increase in comparison with reference plants. The maximum quantum yield of photosystem (PS) II (Fv/Fm), the effective quantum yield of PSII photochemistry (ΦPSII), carotenoid (Car) and anthocyanin content enhanced, whereas the quantum yields of regulated (ΦNPQ) and nonregulated (ΦNO) energy dissipation decreased. Drought combined with HT reduced predawn leaf water potential to values of about ?1.3 MPa, which had adverse effects on gas exchange and PSII activity. Values of P N and g s were 71 and 79% lower than those of HT plants. An impairment of photochemical activity was also observed: the decrease in ΦPSII and the increase of ΦNPQ. However, an irreversible photoinhibitory damage had not occurred. Carotenoid and anthocyanin content remained elevated and soluble sugars (SS) increased twice, whereas proline and MDA accumulation was not detected. On the first 24 h after water-stress relief, g s, P N, ΦPSII, and ΦNPQ did not recover, but SS returned to the reference level. Overall, T. major acquired an adequate capacity for a protection against the development of oxidative stress during drought and water recovery under HT. These findings suggest that T. major is prepared to deal with predicted climate changes.  相似文献   

4.
Palanisamy  K. 《Photosynthetica》2000,36(4):635-638
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) µmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered.  相似文献   

5.
Ashraf  M.  Ashraf  M.Y.  Khaliq  Abdul  Rha  Eui Shik 《Photosynthetica》2004,42(1):157-160
Forty two-month-old plants of Dalbergia sissoo and D. latifolia were subjected for 56 d to water deficit induced by withholding water. Drought stress caused a significant reduction in plant height, stem diameter, net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) in both species, but the reduction was greater in D. sissoo than in D. latifolia. Water use efficiency (P N/E) was adversely affected due to water stress only in D. latifolia, and intrinsic water use efficiency (P N/g s) was increased in both species. There was a slight effect of water stress on variable to maximum fluorescence (Fv/Fm) (quantum yield of photosystem 2) in both species, but the species did not differ significantly in this attribute.  相似文献   

6.
Net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) during water stress and after rehydration were measured in Phaseolus vulgaris, Beta vulgaris, and Zea mays. Immediately before imposition of water stress by cessation of watering, plants were irrigated with water (control), 100 M abscisic acid (ABA), and/or 10 M N6-benzyladenine (BA). In all three species, application of ABA decreased gs, E, and PN already 1 h after application. However, during water stress gs, E, and PN in plants pre-treated with ABA remained higher than in plants pre-treated with water. Positive effects of ABA application were observed also after rehydration. In contrast, the effects of pre-treatment with BA were species-specific. While in bean plants BA application ameliorated negative effect of water stress, only very slight effects were observed in maize, and in sugar beet BA even aggravated the effects of water stress.  相似文献   

7.
We hypothesized that decreased stomatal conductance (g s) at elevated CO2 might decrease transpiration (E), increase leaf water potential (ΨW), and thereby protect net photosynthesis rate (P N) from heat damage in maize (Zea mays L) seedlings. To separate long-term effects of elevated CO2, plants grew at either ambient CO2 or elevated CO2. During high-temperature treatment (HT) at 45°C for 15 min, leaves were exposed either to ambient CO2 (380 μmol mol?1) or to elevated CO2 (560 μmol mol?1). HT reduced P N by 25 to 38% across four CO2 combinations. However, the g s and E did not differ among all CO2 treatments during HT. After returning the leaf temperature to 35°C within 30 min, g s and E were the same or higher than the initial values. Leaf water potential (ΨW) was slightly lower at ambient CO2, but not at elevated CO2. This study highlighted that elevated CO2 failed in protecting P N from 45°C via decreasing g s and ΨW.  相似文献   

8.
9.
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) μmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
T. Łoboda 《Photosynthetica》2001,38(3):429-432
During mild water stress (decrease of full water capacity from 60 to 35 %) net photosynthetic rate (P N) of four spring barley and wheat genotypes was about twice lower than that for unstressed plants and was mainly limited by non-stomatal factors. Availability of CO2 from intercellular spaces did not change significantly when stomatal conductance (g s) decreased from 0.25-0.35 to 0.15-0.20 mol(H2O) m−2 s−1. There may be two main processes leading to similar intercellular CO2 concentration (c i) in stressed and unstressed seedlings despite of twice lower P N under mild water stress: (a) lower diffusion of CO2 through stomata represented by lower g s, (b) lower consumption of CO2 by photosynthetic apparatus of stressed plants. Last factor is partially pronounced by lower response of P N to c i observed for stressed than for control plants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
《Genomics》2021,113(5):3224-3234
Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.  相似文献   

12.
Peroxiredoxins (Prxs) are ubiquitous thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative Type II Prx (ThPrx1) was identified and characterized from Tamarix hispida. The expression of ThPrx1 is highly induced in response to hydrogen peroxide (H2O2) and methyl viologen (MV) stresses. When expressed ectopically, ThPrx1 showed enhanced tolerance against oxidative stress in yeast and Arabidopsis. In addition, transgenic Arabidopsis plants overexpressing ThPrx1 displayed improved seedling survival rates and increased root growth and fresh weight gain under H2O2 and MV treatments. Moreover, transgenic Arabidopsis plants showed decreased accumulation of H2O2, superoxide (O2??) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity compared to wild-type (WT) plants under oxidative stress. Moreover, transgenic plants maintained higher photosynthesis efficiency and lower electrolyte leakage rates than that of WT plants under stress conditions. These results clearly indicated that ThPrx1 plays an important role in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress.  相似文献   

13.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

14.
Rajendrudu  G.  Naidu  C.V.  Mallikarjuna  K. 《Photosynthetica》2000,36(4):627-630
Two teak (Tectona grandis L.f.) phenotypes differing in their leaf length/breadth ratios were subjected to water stress by withholding water supply for three weeks. Growth rates of whole plants, developing leaves (1st and 2nd from shoot apices), and 2nd and 3rd internodes were higher in broad leaved (BL) phenotype than in narrow leaved (NL) phenotype before and after imposing water stress treatment. However, the effect of water stress on these parameters was higher in the BL phenotype than in the NL one. Diurnal course of net photosynthetic rate (P N) of 3rd or 4th leaves from shoot apices measured under well-watered conditions was higher for the NL than BL phenotype. P N, stomatal conductance (g s), and transpiration rate (E) in both phenotypes were negatively affected by water stress and their decline under water stress was significantly higher in the BL than NL plants.  相似文献   

15.
Diurnal changes of photosynthesis in the leaves of grapevine (Vitis vinifera × V. labrusca) cultivars Campbell Early and Kyoho grown in the field were compared with respect to gas exchanges and actual quantum yield of photosystem 2 (ΦPS2) in late May. Net photosynthetic rate (PN) of the two cultivars rapidly increased in the morning, saturated at photosynthetic photon flux density (PPFD) from 1200 to 1500 μmol m−2 s−1 between 10:00 and 12:00 and slowly decreased after midday. Maximum PN was 13.7 and 12.5 μmol m−2 s−1 in Campbell Early and Kyoho, respectively. The stomatal conductance (gs) and transpiration rate changed in parallel with PN, indicating that PN was greatly affected by gs. However, the decrease in PN after midday under saturating PPFD was also associated with the observed depression of ΦPS2 at high PPFD. The substantial increase in the leaf to air vapour pressure deficit after midday might also contribute to decline of gs and PN.  相似文献   

16.
Šantrůček  J.  Hronková  M.  Květoň  J.  Sage  R.F. 《Photosynthetica》2003,41(2):241-252
Environmental factors that induce spatial heterogeneity of stomatal conductance, g s, called stomatal patchiness, also reduce the photochemical capacity of CO2 fixation, yet current methods cannot distinguish between the relative effect of stomatal patchiness and biochemical limitations on photosynthetic capacity. We evaluate effects of stomatal patchiness and the biochemical capacity of CO2 fixation on the sensitivity of net photosynthetic rate (P N) to stomatal conductance (g s), θ (θ = δP N/g s). A qualitative model shows that stomatal patchiness increases the sensitivity θ while reduced biochemical capacity of CO2 fixation lowers θ. We used this feature to distinguish between stomatal patchiness and mesophyll impairments in the photochemistry of CO2 fixation. We compared gas exchange of sunflower (Helianthus annuus L.) plants grown in a growth chamber and fed abscisic acid, ABA (10−5 M), for 10 d with control plants (-ABA). P N and g s oscillated more frequently in ABA-treated than in control plants when the leaves were placed into the leaf chamber and exposed to a dry atmosphere. When compared with the initial CO2 response measured at the beginning of the treatment (day zero), both ABA and control leaves showed reduced P N at particular sub-stomatal CO2 concentration (c i) during the oscillations. A lower reduction of P N at particular g s indicated overestimation of c i due to stomatal patchiness and/or omitted cuticular conductance, g c. The initial period of damp oscillation was characterised by inhibition of chloroplast processes while stomatal patchiness prevailed at the steady state of gas exchange. The sensitivity θ remained at the original pre-treatment values at high g s in both ABA and control plants. At low g s, θ decreased in ABA-treated plants indicating an ABA-induced impairment of chloroplast processes. In control plants, g c neglected in the calculation of g s was the likely reason for apparent depression of photosynthesis at low g s. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Khan  W.M.  Prithiviraj  B.  Smith  D.L. 《Photosynthetica》2002,40(4):621-624
On the first day after foliar application, chitosan pentamer (CH5) and chitin pentamer (CHIT5) decreased net photosynthetic rate (P N) of soybean and maize, however, on subsequent days there was an increase in P N in some treatments. CH5 caused an increase in maize P N on day 3 at 10–5 and 10–7 M; the increases were 18 and 10 % over the control plants. This increase was correlated with increases in stomatal conductance (g s) and transpiration rate (E), while the intercellular CO2 concentration (C i) was not different from the control plants. P N of soybean plants did not differ from the control plants except for treatment CH5 (10–7 M) which caused an 8 % increase on day 2, along with increased g s, E, and C i. On days 5 and 6 the CHIT5 treatment caused a 6–8 % increase in P N of maize, which was accompanied by increases in g s, E, and C i. However, there was no such increase for soybean plants treated with CHIT5. In general, foliar application of high molecular mass chitin (CHH) resulted in decreased P N, particularly for 0.010 % treated plants, both in maize and soybean. Foliar applications of chitosan and chitin oligomers did not affect (p > 0.05) maize or soybean height, root length, leaf area, shoot or root or total dry mass.  相似文献   

18.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

19.
Tropospheric ozone (O3) decreases photosynthesis, growth, and yield of crop plants, while elevated carbon dioxide (CO2) has the opposite effect. The net photosynthetic rate (P N), dark respiration rate (R D), and ascorbic acid content of rice leaves were examined under combinations of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, O0.3, respectively) and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively). The P N declined immediately after O3 fumigation, and was larger under O0.3 than under O0.1. When C800 was combined with the O3, P N was unaffected by O0.1 and there was an approximately 20 % decrease when the rice leaves were exposed to O0.3 for 3 h. The depression of stomatal conductance (g s) observed under O0.1 was accelerated by C800, and that under O0.3 did not change because the decline under O0.3 was too large. Excluding the stomatal effect, the mesophyll P N was suppressed only by O0.3, but was substantially ameliorated when C800 was combined. Ozone fumigation boosted the R D value, whereas C800 suppressed it. An appreciable reduction of ascorbic acid occurred when the leaves were fumigated with O0.3, but the reduction was partially ameliorated by C800. The degree of visible leaf symptoms coincided with the effect of the interaction between O3 and CO2 on P N. The amelioration of O3 injury by elevated CO2 was largely attributed to the restriction of O3 intake by the leaves with stomatal closure, and partly to the maintenance of the scavenge system for reactive oxygen species that entered the leaf mesophyll, as well as the promotion of the P N.  相似文献   

20.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号