首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myosin phosphatase complex that directly binds RhoA in vascular smooth muscle cells (VSMCs). Through a series of molecular and cellular studies, we investigated whether insulin stimulates the binding of MRIP to MYPT1 and compared the results generated from VSMCs isolated from both Wistar-Kyoto (WKY) control and Goto-Kakizaki (GK) diabetic rats. We demonstrate for the first time that insulin stimulates the binding of MRIP to MYPT1 in a dose- and time-dependent manner, as determined by immunoprecipitation, implying a regulatory role for MRIP in insulin-induced vasodilation signaling via MYPT1 interaction. VSMCs from GK model of Type 2 diabetes had impaired insulin-induced MRIP/MYPT1 binding as well as reduced MRIP expression. Adenovirus-mediated overexpression of MRIP in GK VSMCs led to significantly improved insulin-stimulated MRIP/MYPT1 binding. Finally, insulin-stimulated MRIP translocation out of stress fibers, which was observed in control VSMCs, was impaired in GK VSMCs. We believe the impaired expression of MRIP, and therefore decreased insulin-stimulated MRIP/MYPT1 association, in the GK diabetic model may contribute to the impaired insulin-mediated vasodilation observed in the diabetic vasculature and provides a novel therapeutic strategy for the treatment of Type 2 diabetes.  相似文献   

2.
The binding of chemokines to their receptors guides lymphocyte migration. However, the precise mechanism that links the chemotactic signals with the energy and traction force generated by the actomyosin complex of the cell has not been elucidated. Using biochemical approaches and mass spectrometry analysis, we found an association between the C-termini of CXCR4 and CCR5 and the motor protein nonmuscle myosin H chain-IIA. Immunoprecipitation experiments revealed that this association also occurs between the endogenous molecules in T lymphocytes. As expected, myosin L chain was also associated with CXCR4. Confocal microscopy analysis showed that CXCR4 and motor protein nonmuscle myosin H chain-IIA colocalize at the leading edge of migrating T lymphocytes, together with filamentous actin and myosin L chain. These results provide the first evidence of a biochemical association between chemokine receptors and motor proteins, a mechanosignaling mechanism that may have a key role in lymphocyte migration.  相似文献   

3.
We compared the breakdown of total cellular protein with that of the contractile protein, myosin, in cultured C2 mouse skeletal myotubes. The degradation of long-lived cellular proteins (which comprise the vast majority of myotube proteins) was inhibited by serum, insulin, and rat insulin-like growth factor-2. A physiological concentration of insulin was effective, but most of the effect of insulin occurred at concentrations well above the physiological range. IGF-2 inhibited protein breakdown at concentrations well within the range of total IGF-2 known to be present in the serum of fetal and neonatal rats. The breakdown of short-lived proteins was not altered by insulin or serum. We measured myosin degradation using a monoclonal antibody directed against myosin heavy chain. The half-life of myosin was 27 hours, and myosin breakdown was not altered by serum withdrawal applies to certain proteins, but not to others.  相似文献   

4.
We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps.  相似文献   

5.
Studies in singletons have found an association between birthweight and Type 2 diabetes in adult life. The aim of this study was to investigate whether this association could also be seen in twins. 59 monozygotic (MZ) and 69 dizygotic (DZ) same-sex twin pairs aged 19-50 years and 89 singleton controls matched for age, gestational age, gender, maternal age and parity were recruited from a local obstetric database. Associations between adult glucose, HbA(1)C and insulin levels and insulin resistance and birthweight were assessed by linear regression with adjustment for confounding variables. Twins were significantly lighter at birth than singleton controls, but there were no significant differences in adult weight, glucose, HbA(1)C and insulin levels or insulin resistance between twins and controls. The relationship between birthweight and fasting glucose and insulin levels, and insulin resistance was not significantly different from zero in either twins or controls, but birthweight was significantly negatively associated with HbA(1)C only in controls. There was no evidence of a difference between MZ and DZ twins in unpaired or within-pair analysis. These results provide little evidence that low birthweight in twins increases the risk of impaired glucose-insulin metabolism in young adults or that genetic factors can account for the association observed in singletons.  相似文献   

6.
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.  相似文献   

7.
Plasma membrane association of Acanthamoeba myosin I   总被引:19,自引:15,他引:4       下载免费PDF全文
《The Journal of cell biology》1989,109(4):1519-1528
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.  相似文献   

8.
Recent reports in the literature have indicated a physical association of creatinephosphokinase (CPK) with the tail portion of the myosin molecule. The present paper describes further studies on the interaction of CPK with myosin and myosin fragments, using the techniques of electron paramagnetic resonance (EPR) and nanosecond fluorescence depolarization. From EPR work, spin-labeled CPK appears to interact with myosin, tail-less myosin (heavy meromyosin [HMM]), and myosin heads (subfragment-1 [S1]), the extent of interaction being proportional to the S1 content of myosin or its fragments. Spin-labeled CPK did not evidence interaction with the headless myosin “rods”, with myosin tails (light meromyosin [LMM]), with S2 necks (which connect S1 to the rest of the myosin molecule), or with actin. When a fluorescent dye is directed to the essential ϵ-amino group of CPK, nanosecond fluorescence depolarization studies indicate a substantial interaction with myosin, HMM, and S1, but very little with F-actin. When the “fast-reacting” thiol of the S1 moiety or the “essential thiol” of CPK was labeled with either a fluorescent dye or a spin label, no interaction between CPK and myosin (or S1) was detected.  相似文献   

9.
Both fluorescence microscopy and fluorometric analysis techniques have been used to characterize insulin receptor capping in IM-9 human lymphoblastoid cells. Morphologically, insulin caps appear similar to lectin or antiimmunoglobulin-induced caps displaying a preferential accumulation of actin, myosin, and actin-binding protein directly underneath the cap structure. Using the fluorescent calcium indicator quin2 we have detected no change in the calcium activity following insulin stimulation. However, in the presence of a number of calmodulin inhibitors, such as W-5, W-7, W-12, and trifluoperazine (TFP), insulin capping is significantly inhibited, which implies that a calmodulin-regulated process is involved. Using double immunofluorescence microscopy, we have found that the calmodulin-dependent myosin light chain kinase (MLCK) is concentrated directly beneath insulin caps. Upon treatment with trifluoperazine (TFP), the redistribution of both MLCK and insulin receptors are inhibited concomitantly. Our data indicate that the calmodulin-dependent myosin light chain kinase may be directly responsible for the activation of actomyosin-mediated contractility during insulin receptor capping.  相似文献   

10.
Previous work from our laboratory indicated that pancreatic islets contain myosin light chain kinase, a calcium- and calmodulin-activated enzyme. This enzyme catalyzes phosphorylation of myosin which, in tissues containing smooth muscle, is believed to permit the ATPase of myosin to be activated by actin. The current report shows that incubating islet cytosol with ATP under conditions that should permit phosphorylation of myosin markedly enhances islet myosin ATPase activity in the presence of actin. It has been suggested that contractile proteins power insulin granule movements in the beta cell. Phosphorylation of myosin may be one of the means of coupling stimuli to insulin secretion.  相似文献   

11.
An earlier electron microscopic study using different caldesmon forms complexed with actin revealed that the aggregates produced display regular periodic striation after antibody labeling of the 35-kDa caldesmon fragment. This approach provides further evidence that a caldesmon fragment, even as small as 15 kDa, can induce actin filaments to assemble into bundles. The observed difference in the compactness of these structures, depending on the use of the 15-kDa fragment instead of the 35-kDa fragment, suggests the existence of more than one actin-binding site in the caldesmon molecule. In this study, the caldesmon-induced process of F-actin association was investigated in the presence of skeletal myosin subfragment-1, using light-scattering methods, cosedimentation experiment and electron microscopic techniques. We show that the actin-caldesmon association is partially destabilized in the presence of subfragment-1 and this leads to a ternary complex formation. Immunogold labelling of the actin filaments still reveals the presence of caldesmon within this structure. This latter result strengthens the hypothesis that actin has a site(s) able to bind both caldesmon and myosin subfragment-1, as detected by recent NMR observations. This evidence is discussed with respect to the regulatory function of caldesmon during smooth muscle contraction.  相似文献   

12.
Total internal reflection fluorescence microscopy revealed how individual bipolar myosin II filaments accumulate at the equatorial region in dividing Dictyostelium cells. Direct observation of individual filaments in live cells provided us with much convincing information. Myosin II filaments accumulated at the equatorial region by at least two independent mechanisms: (i) cortical flow, which is driven by myosin II motor activities and (ii) de novo association to the equatorial cortex. These two mechanisms were mutually redundant. At the same time, myosin II filaments underwent rapid turnover, repeating their association and dissociation with the actin cortex. Examination of the lifetime of mutant myosin filaments in the cortex revealed that the turnover mainly depended on heavy chain phosphorylation and that myosin motor activity accelerated the turnover. Double mutant myosin II deficient in both motor and phosphorylation still accumulated at the equatorial region, although they displayed no cortical flow and considerably slow turnover. Under this condition, the filaments stayed for a significantly longer time at the equatorial region than at the polar regions, indicating that there are still other mechanisms for myosin II accumulation such as binding partners or stabilizing activity of filaments in the equatorial cortex.  相似文献   

13.
Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.  相似文献   

14.
1. The reactivities of scallop myosin with 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) and with 2,4,6-trinitrobenzene sulfonate (TNBS) were found to be affected by dissociation and association of regulatory light chains (RLC) of myosin. 2. Approximately 4 mol of sulfhydryl groups of "desensitized" myosin (DM) were masked on association of DM with RLC. When these sulfhydryl groups were reacted with DTNB, the modified DM became incapable of associating with RLC, but when the modified DM was treated with 2-mercaptoethanol, the ability to associate with RLC was fully recovered. 3. The DTNB-reactivity of scallop myosin and its RLC content were measured as a function of calcium and magnesium concentrations. The results thus obtained could be explained in terms of our previous suggestion (J. Biochem. 94, 1061 (1983] that there are two different attachments between DM and RLC. 4. The relation between the TNBS-reactivity and the RLC content was not simple but complex. Not the extent, but the rate of trinitrophenylation of scallop myosin was affected by dissociation and association of DM with RLC; thus, the involved TNBS-reactive lysine residues did not seem to be in the regions on DM and RLC that would be physically covered upon DM-RLC association. 5. The amount of the involved lysine residues was estimated to be only 1 mol per mol of myosin. Modification of the specific lysine residues resulted in a partial decrease in the DM-RLC association.  相似文献   

15.
Plasma membrane recycling is an important process necessary for maintaining membrane composition. The motor protein myosin Vb regulates plasma membrane recycling through its association with Rab11a. Overexpression of the tail of myosin Vb disrupts trafficking out of plasma membrane recycling systems and leads to the accumulation of Rab11a in both polarized and non-polarized cells. We have investigated the association of Rab11 family interacting protein 2 (Rab11-FIP2) with myosin Vb as an adapter protein between Rab11a and myosin Vb. Immunofluorescence studies indicated a colocalization of endogenous Rab11-FIP2 with green fluorescent protein-myosin Vb tail overexpressed in Madin-Darby canine kidney (MDCK) cells. Yeast two hybrid assays showed that amino acids 129-356 of Rab11-FIP2 were important for binding to myosin Vb tail. In vitro association assays and co-transfection experiments in both MDCK and HeLa cells confirmed this result but further refined the binding site to amino acids 129-290 of Rab11-FIP2. Like myosin Vb, functional studies indicated that Rab11-FIP2 is also important for normal plasma membrane recycling. Green fluorescent protein-Rab11-FIP2 (129-512), which lacks its amino-terminal C2 domain, functioned as a dominant negative acting truncation that caused accumulation of Rab11a and disrupted IgA trafficking in MDCK cells and transferrin trafficking in HeLa cells. The ternary association of myosin Vb and Rab11-FIP2 with Rab11a suggests that a multimeric protein complex is involved in vesicle trafficking through plasma membrane recycling systems.  相似文献   

16.
Myosin 5a controls insulin granule recruitment during late-phase secretion   总被引:1,自引:0,他引:1  
We have examined the importance of the actin-based molecular motor myosin 5a for insulin granule transport and insulin secretion. Expression of myosin 5a was downregulated in clonal INS-1E cells using RNAinterference. Stimulated hormone secretion was reduced by 46% and single-cell exocytosis, measured by capacitance recordings, was inhibited by 42% after silencing. Silencing of Slac-2c/MYRIP, which links insulin granules to myosin 5a, resulted in similar inhibition of single-cell exocytosis. Antibody inhibition of the myosin 5a-Slac-2c/MYRIP interaction significantly reduced the recruitment of insulin granules for release. The pool of releasable granules independent of myosin 5a activity was estimated to approximately 550 granules. Total internal reflection microscopy was then applied to directly investigate granule recruitment to the plasma membrane. Silencing of myosin 5a inhibited granule recruitment during late phase of insulin secretion. In conclusion, we propose a model where insulin granules are transported through the actin network via both myosin 5a-mediated transport and via passive diffusion, with the former playing the major role during stimulatory conditions.  相似文献   

17.
We observed, for the first time, the elementary process for the ordered self-assembly formation of myosin in solution. It was realized exclusively under the specific condition of 200 mM KCl, 5 mM phosphate buffer, pH 7.08, at 15-20 degrees C, which is called the transition-generating condition (TGC). Described more in detail: pure myosin extracted from rabbit skeletal muscle exhibited the structural transition in its association form only when the myosin concentration c was changed under TGC. The myosin solubility was saturated in both edges of the total myosin concentration c > 10.0 mg/mL (solubility region II) and c < or = 0.25 mg/mL (solubility region I). In the intermediate region, the association structure of myosin changed stepwise with decreasing c. The steps were classified into four regions: region I (c < or = 0.25 mg/mL), II (0.25 < or = c < or = 0.50 mg/mL), III (0.50 < or = c < or = 5.0 mg/mL), and IV (c > 5.0 mg/mL). In each region except II, the plot of the relative soluble myosin concentration c(aq)/c against c(-1) gave a straight line of different slopes, certifying that myosin constructs self-assemblies by the closed association mechanism and that the self-assembly takes dual structures in each region. In region II, a drastic transition occurred in the self-assembled dual structures. Here, a highly associated (insoluble) giant assembly would break into soluble assemblies composed of several myosin molecules. The solubility region I originates a driving force for this structural transition. The basic binding unit of the self-assembly would be a parallel myosin-dimer constructed by the intermolecular axial staggers of 14.3 and 43 nm, as is observed by X-ray diffraction for the thick filament assembly or light meromyosin paracrystals. Myosin could take a single rod-like chain form only in an extremely low concentration region of c < or = c(aq,0) (= 0.053 mg/mL). The association behavior revealed in the present study suggests strongly that the complementary charge cluster and its electrostatic interaction between parallel myosin rods play a crucial role for the ordered self-assembly formation and that the specific electrostatic atmosphere of the solution under TGC is essential to the association mechanism in skeletal muscle myosin, or the thick filament formation of the mammals.  相似文献   

18.
Actomyosin, myosin, and actin from different sources are adsorbed, apparently as a monolayer, by polystyrene particles teins for 1 mg of Lytron were about 10-7 liters mol-1, while heterogeneity indices (alpha) varied from 0.70 to 1.0 presumably as a function of spontaneous aggregation in the liquid phase. Adsorption was irreversible. Orientation of absorbed molecules permitted association of bound muscle actin with platelet or muscle myosin. The association constant of the former reaction was 2.78 times 10-6 liters mol-1. Enzymatic properties of adsorbed actomyosin, Mg2+ATPase activity was abolished, but association of myosin with bound actin, or association of actin with bound myosin was accompanied by restoration of Mg2+ATPase activity. Every subunit of F-actin strands, unless F-actin had been fully depolymerized to G-actin, could bind myosin and activate Mg2+ATPase activity. Immunogenic characteristics of muscle myosin were enhanced by Lytron adsorption. Elicited antibodies showed selective specificity for an antigenic determinant located near or at the actin combining site of muscle myosin. Antibodies did not react with actomyosin. Antibodies prevented association of actin with muscle myosin because they inhibited both superprecipitation and development of Mg2+ATPase activity.  相似文献   

19.
Los VT  Haagsman HP 《Cytokine》2006,35(3-4):154-158
Increased muscle catabolism is frequently observed in association with inflammatory disease. TNF-alpha has been implicated as an important messenger for muscle catabolism. Experiments with cultured muscle cells exposed to TNF-alpha have produced conflicting results. In a mouse cell line (C2C12), effects ranged from catabolic to anabolic. The results reported here offer an explanation for the observed discrepancies. It was found that TNF-alpha induced proliferation of myoblasts in fully differentiated cultures in low serum media and inhibited adult fast myosin accumulation under all conditions that were tested. Furthermore, TNF-alpha caused a proliferation dependent increase in total cell protein. Addition of insulin masked the effect of TNF-alpha on total protein, but not that on adult fast myosin accumulation. Discrepancies between studies can be explained by differences in proliferation rate, the dynamic nature of C2C12 myotube cultures and accumulation of adult fast myosin. The results are consistent with a dual role of TNF-alpha: stimulation of regeneration by short-term exposure and induction of muscle wasting by prolonged exposure.  相似文献   

20.
Adult rats treated with high doses of streptozocin became progressively more hyperglycemic during the first month of the diabetic condition. Treatment of these rats with the sulfonylurea glyburide halted, and in some cases, reversed this process in a high percentage of the diabetics. Associated with the glyburide-mediated improvement in fasting blood glucose levels was an increase in myocardial glucose utilization and lactate production. The stimulation of myocardial glucose utilization by insulin was greater in glyburide-treated hearts, indicating that the hyperglycemic agent increased insulin responsiveness. The sulfonylurea also partially restored insulin sensitivity to the normal range. In agreement with previous studies, myocardial mechanical function was significantly impaired in the diabetic heart. When treated with glyburide, the severity of the mechanical defect was significantly less. The sulfonylurea also promoted an increase in myosin ATPase activity and a shift in the myosin isozyme pattern in favour of the most active V1 form. These results imply that glyburide therapy can provide benefit to the diabetic heart by improving energy metabolism and promoting a shift in myosin towards the most active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号