首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In M. braunii, the uptake of NO3 and NO2 is blue-light-dependent and is associated with alkalinization of the medium. In unbuffered cell suspensions irradiated with red light under a CO2-free atmosphere, the pH started to rise 10s after the exposure to blue light. When the cellular NO3 and NO2 reductases were active, the pH increased to values of around 10, since the NH4+ generated was released to the medium. When the blue light was switched off, the pH stopped increasing within 60 to 90s and remained unchanged under background red illumination. Titration with H2SO4 of NO3 or NO2 uptake and reduction showed that two protons were consumed for every one NH4+ released. The uptake of Cl was also triggered by blue light with a similar 10 s time response. However, the Cl -dependent alkalinization ceased after about 3 min of blue light irradiation. When the blue light was turned off, the pH immediately (15 to 30 s) started to decline to the pre-adjusted value, indicating that the protons (and presumably the Cl) taken up by the cells were released to the medium. When the cells lacked NO3 and NO2 reductases, the shape of the alkalinization traces in the presence of NO3 and NO2 was similar to that in the presence of Cl, suggesting that NO3 or NO2 was also released to the medium. Both the NO3 and Cl-dependent rates of alkalinization were independent of mono- and divalent cations.  相似文献   

2.
NO3?-dependent O2 in synchronous Scenedesmus obtusiusculus Chod. in the absence of CO2 is stoichiometric with NH4+ excretion, indicating a close coupling of NO3? reduction to non-cyclic electron flow. Also in the presence of CO2, NO3? stimulates O2 evolution as manifested by an increase in the O2/CO2 ratio from 0.96 to 1.11. This quotient was increased to 1.36 by addition of NO2?, without competitive interaction with CO2 fixation, indicating that the capacity for non-cyclic electron transport at saturating light is non-limiting for simultaneous reduction of NO3? and CO2 at high rates. During incubation with NO3?+ CO2, no NH4+ is released to the outer medium, whereas during incubation with NO2?+ CO2, excess NH4+ is formed and excreted. NO3? uptake is stimulated by CO2, and this stimulation is also significant when the cellular energy metabolism is restricted by moderate concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, whereas NO3? uptake in the absence of CO2 is severely inhibited by the uncoupler. Also under energy-restricted conditions NO3? uptake is not competitive with CO2 fixation. Antimycin A is inhibitory for NO3? uptake in the absence of CO2, and there is no enhancement of NO3? uptake by CO2 in the presence of antimycin A. It is assumed that the energy demand for NO3? uptake is met by energy fixed as triosephosphates in the Calvin cycle. Antimycin A possibly affects the transfer of reduced triose phosphates from the chloroplast to the cytoplasm. Active carbon metabolism also seems to exert a control effect on NO3? assimilation, inducing complete incorporation of all NO3? taken up into amino acids. This control effect is not functional when NO2? is the nitrogen source. Active carbon metabolism thus seems to be essential both for provision of energy for NO3? uptake and for regulation of the process.  相似文献   

3.
The rate of nitrogen uptake by seven Sphagnum species, which from a gradient from hummock to hollow and from ombrotrophic to minerotrophic conditions, was measured as the decrease in the concentrations of NH4+ and NO3 from solutions in which capitula were grown under laboratory conditions.
The highest uptake rate was by individuals of each species with large capitula and a high number of ion exchange sites, i.e. lawn species ( S. pulchrum , S. fallax , S. papillosum and S. magellanicum ). On a dry-mass basis, the most effective species were the hummock species ( S. fuscum and S. rubellum ), even though these species have a low dry mass. Hummock species, which occur in high densities and have high potential N-uptake rates on a dry-mass basis, were the most effective species in retaining available nitrogen.  相似文献   

4.
Abstract. Nitrate uptake into Chara corallina cells at different external pH (pHo) after different NO3 pretreatment conditions has been investigated. Following NO3 pretreatment (0.2 mol m−3 NO3) there was little effect of pHo on subsequent net NO3 uptake into Chara cells. After N deprivation (2 mmol m−3 NO3) there was a pronounced effect of pHo on nitrate uptake, the maximum rate occurring at pHo 4.7. There was no consistent relationship between OH efflux and NO3 uptake in short term experiments (< 1 h). NO3 efflux was also sensitive to pHo, the maximum rate occurring at ∼ pHo 5.0. An inhibitor of the proton pump, DES, immediately stimulated NO3 uptake into cells pretreated with NO3 and prevented the time-dependent decrease in NO3, uptake into Chara cells that had been previously treated with low N (2 mmol m−3 NO3). NO3 efflux was found to be very sensitive to DES with Ki= 0.7 mmol m−3. At the optimum pHo for NO3 uptake the effect of DES on membrane potential (ψm) were slight, and only apparent after 30 min. The results are interpreted in context of current models relating NO3 uptake and H+ pump activity. A new model for NO3 uptake is proposed which involves NO3/NO3 exchange at steady state.  相似文献   

5.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   

6.
Chronic N additions to forest ecosystems can enhance soil N availability, potentially leading to reduced C allocation to root systems. This in turn could decrease soil CO2 efflux. We measured soil respiration during the first, fifth, sixth and eighth years of simulated atmospheric NO3? deposition (3 g N m?2 yr?1) to four sugar maple‐dominated northern hardwood forests in Michigan to assess these possibilities. During the first year, soil respiration rates were slightly, but not significantly, higher in the NO3?‐amended plots. In all subsequent measurement years, soil respiration rates from NO3?‐amended soils were significantly depressed. Soil temperature and soil matric potential were measured concurrently with soil respiration and used to develop regression relationships for predicting soil respiration rates. Estimates of growing season and annual soil CO2 efflux made using these relationships indicate that these C fluxes were depressed by 15% in the eighth year of chronic NO3? additions. The decrease in soil respiration was not due to reduced C allocation to roots, as root respiration rates, root biomass, and root turnover were not significantly affected by N additions. Aboveground litter also was unchanged by the 8 years of treatment. Of the remaining potential causes for the decline in soil CO2 efflux, reduced microbial respiration appears to be the most likely possibility. Documented reductions in microbial biomass and the activities of extracellular enzymes used for litter degradation on the NO3?‐amended plots are consistent with this explanation.  相似文献   

7.
The relation between light-induced electron transport with NO3?, NO2? or CO2 as acceptors, ATP pools and transients in dark-light-dark transitions, and phosphate uptake was examined in phosphorus-starved cells of Scenedesmus obtusiusculus Chod. Net O2 evolution at saturating light was around 6 μmol × (mg chlorophyll × h)?1 in the absence of any acceptor, but reached average rates of 21, 65 and 145 μmol × (mg chlorophyll × h)?1 upon additions of 5 mM KNO3, KNO2 and KHCO3, respectively. The apparent rate of photophosphorylation in transition experiments was only a few percent of the rate calculated from CO2-dependent O2 evolution. Blocking non-cyclic electron transport with DCMU inhibited phosphate assimilation, but acceleration of non-cyclic electron flow by addition of NO3? or NO2? did not stimulate phosphate assimilation as compared to the situation without an acceptor. A functional non-cyclic system might primarily be needed for an efficient shuttle transfer of ATP from the chloroplast to the cytoplasm. An inhibition of the non-cyclic system due to lack of reducible substrates accelerates the cyclic system and thus indicates a regulation mechanism between the two systems.  相似文献   

8.
9.
10.
Net rates of NO3? and K+ uptake were compared for oilseed rape (Brassica napus L. cv. Jet neuf), perennial ryegrass (Lolium perenne L. cv. S23), Italian ryegrass (Lolium multiflorum Lam. cv. Augusta) and wheat (Triticum aestivum L. cv. Fen-man) in flowing solution culture during a 4-day sequence of low-low-high-high natural irradiance. Concentrations of NO3? (10 μM) and K+ (2.5 μM) in solutions were maintained automatically and hourly variation in net uptake of these ions was measured. During the 2 days of low irradiance (<1 MJ m?2 day?1) the uptake rates of both ions by all species were low at <1 mmol NO3?, m?2 h?1 and <0.4 mmol K+ m?2 h?1. Uptake increased in each species during the first day of high irradiance (7.90 MJ m?2 day?1) to >4 mmol NO3? m?2 h?1 and >1.4 mmol K+ m?1 h?1. These higher rates were maintained throughout the following night. The lag-time between maximum irradiance and the onset of the highest acceleration in uptake was greater for NO3? (5–8 h) than for K+ (≤1 h) in rape, wheat and Italian ryegrass. Uptake of NO3?, by perennial ryegrass showed an almost constant acceleration for 18 h following maximum irradiance. In all species the measured maximum inflows (uptake rate per unit root length) of both ions were greater than theoretical maximum potential inflows to a non-competing infinite-sink root in soil, by factors of 7 and 36, respectively, for NO3? and K+, averaged over all species.  相似文献   

11.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

12.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

13.
Two nearly adjacent subcatchments, located in the Adirondack Mountains of New York State, US, with similar atmospheric inputs of N (0.6 kmol ha?1 yr?1), but markedly different stream water solute concentrations, provided a unique opportunity to evaluate the mechanisms causing this variation. Subcatchment 14 (S14) had much greater stream water Ca2+ and NO3? concentrations (851 and 73 μmolc L?1, respectively) than Subcatchment 15 (S15) (427 and 26 μmolc L?1, respectively). To elucidate factors affecting the variability in stream water concentrations, soil and forest floor samples from each subcatchment were analyzed for total elemental cations and extractable N species. Mineral soil samples were also analyzed for exchangeable cations. Tree species composition was characterized in each subcatchment and potential differences in land use history and hydrology were also assessed. Compared with S15, soils in S14 had significantly higher total elemental Ca2+ in the forest floor (380 vs. 84 μmol g?1), Bs horizon (e.g. 1361 vs. 576 μmol g?1) and C horizon (1340 vs. 717 μmol g?1). Exchangeable Ca2+ was also significantly higher in the mineral soil (64 μmol g?1 in S14 vs. 8 μmol g?1 in S15). Extractable NO3? was higher in S14 compared with S15 in both the forest floor (0.1 vs. 0.01 μmol g?1) and Bs horizon (0.2 vs. 0.07 μmol g?1) while extractable NH4+ was higher in S14 vs. S15 in the forest floor (7 vs. 5 μmol g?1). The total basal area of ‘base‐rich indicator’ tree species (e.g. sugar maple, American basswood, eastern hophornbeam) was significantly greater in S14 compared with S15, which had species characteristic of sites with lower base concentrations (e.g. American beech and eastern white pine). The disparity in stream water Ca2+ and NO3?, concentrations and fluxes between S14 and S15 were explained by differences in tree species composition and soil properties rather than differences in land use or hydrology. The marked difference in soil Ca2+ concentrations in S14 vs. S15 corresponded to the higher stream water Ca2+ and the larger contribution of base‐rich tree species to the overstory biomass in S14. Soil under such species is associated with higher net mineralization and nitrification and likely contributed to the higher NO3? concentrations in the drainage waters of S14 vs. S15. Studies investigating differences in spatial and temporal patterns of the effects of chronic N deposition on surface water chemistry need to account for changes in tree species composition and how vegetation composition is influenced by soil properties, as well as climatic and biotic changes.  相似文献   

14.
The long-term effects of different nitrogen sources on the endogenous IAA and cytokinin levels in two bromeliad species were investigated. In nature, Vriesea philippocoburgii is a tank-forming epiphytic bromeliad which uses the tank water reservoir as a substitute for soil, whereas Tillandsia pohliana is a tankless atmospheric epiphytic species. A culture was established from seeds germinated in aseptic condictions, and the plantlets were grown for 6 months in a modified Knudson medium to which was added 8 mol m−3 of nitrogen in the form of NO3, NH4+ or urea. The hormonal contents of the bromeliad shoots were determined by means of high-performance liquid chromatography (HPLC), coupled to an enzyme-linked immunosorbent assay (ELISA) for indole-3-acetic acid (IAA), isopentenyladenine (iP), isopentenyladenosine ([9R]iP), zeatin (Z) and zeatin riboside ([9R]Z). Nitrogen supplied in the form of urea gave the highest values of fresh and dry weights for both species, and this was positively correlated to IAA levels. The cytokinin patterns showed that isopentenyladenosine was the predominant form for both species in all samples. However, urea induced the highest level of this riboside form and also the highest level of total cytokinins for V. philippocoburgii, while NH4+ had the same effect on the atmospheric species. These results are discussed in terms of the different growth habits of these two species in nature. It is suggested that urea may be an important source of nitrogen often found inside the tank of V. philippocoburgii. NO3 treatment increased the IAA/Cks balance, mainly for V. philippocoburgii, while urea and NH4+ shifted this ratio in favour of cytokinins, thus apparently inhibiting root development in both species.  相似文献   

15.
Abstract. Wild radish plants deprived of, and continuously supplied with solution NO?3 for 7 d following 3 weeks growth at high NO?3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO?3-N) among individual organs. Initial levels of NO?3-N accounted for 25% of total plant N. Following termination of NO?3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO?3-supplied plants, and endogenous NO?3-N content was reduced to nearly zero. Older leaves lost NO?3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3?-supplied compared to NO?3-deprived plants. Simulations of the time course of NO?3 depletion for plants of various NH2-N and NO?3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO?3 accumulation as a buffer against fluctuations in the N supply to demand ratio.  相似文献   

16.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

17.
Net fluxes of NH4+ and NO3 along adventitious roots of rice ( Oryza sativa L.) and the primary seminal root of maize ( Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3 at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3 net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3 was the sole nitrogen source, although the rates of NO3 net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3 net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.  相似文献   

18.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

19.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

20.
A model recently proposed by Siddiqi & Glass (Plant, Cell, and Environment 25, 1211–1217, 2002) attempts to reconcile discrepancies in the measurement of cytosolic nitrate concentrations ([NO3]cyt) in plant root cells, specifically between low (~ 4 mm ) homeostatic values reported in studies using ion‐specific microelectrodes on the one hand, and wide fluctuations in [NO3]cyt reported in other studies, especially those using compartmental analysis by tracer efflux (CATE). Although Siddiqi & Glass concede that cytosolic NO3 homeostasis, as determined by microelectrodes, is at odds with certain experimental observations, they nevertheless promote a model that takes microelectrode readings at face value, and assert that the variations seen using CATE methodology are artefacts attributable to contributions from substantial, rapidly exchanging, and highly variable NO3 pools putatively residing in organelles such as plastids and the endoplasmic reticulum. We show here that such a model is not tenable, drawing upon experimental evidence from previous studies, and from a more comprehensive model that examines the characteristics and consequences of subcompartmented cytoplasmic exchange in root cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号