首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The differential expression of H-2 specificities recognized by antibody and by cytotoxic T lymphocytes (CTL) has been studied using a clone (FY7) of the C57BL/6 leukemia cell line FBL-3 (H-2 b /H-2 b ). Unlike C57BL/10 spleen cells, EL-4 lymphoma cells and Y57-2C leukemia cells (allH-2 b /H-2 b ), FY7 failed to induce the primary in vitro generation of anti-H-2b CTL by (B10.A x A)F1 (H-2 a /H-2 a or (B10.D2 x BALB/c)F1 (H-2 d /H-2 d ) responder spleen cells. In addition, FY7 was not lysed by, and did not competitively inhibit anti-H-2b CTL. Quantitative absorption tests with H-2Kb and H-2Db antisera revealed that FY7 expressed these antigens in quantitatively similar amounts to EL-4. The H-2Kb product of FY7 appeared to be identical with that of C57BL/10 spleen cells both in apparent molecular weight and isoelectric point. Yet FY7 failed to inhibit anti-H-2Kb CTL competitively in a cold target inhibition assay. Possible mechanisms are discussed for the lack of T-lymphocyte recognition of the H-2Kb-gene product expressed by FY7.Abbreviations used in this paper CTL cytotoxic T lymphocytes - MHC major histocompatibility complex - MLC mixed lymphocyte culture - PAGE polyacrylamide gel electrophoresis  相似文献   

3.
A comprehensive analysis of human alloimmune cytotoxic T lymphocytes (CTLs) specific for the HLA-A2 antigen identified 11% of HLA-A2 positive cells as outliers. In total, 11 unrelated serologically indistinguishable, but distinguishable by cell-mediated lympholysis (CML) HLA-A2 positive outlier cells were identified. The outlier cells could be subdivided in two subgroups according to reactivity patterns obtained with CTLs directed against the HLA-A2 antigen of outlier cells and their inhibitory capacity in specific competitive inhibition experiments. Thus, the serologically defined HLA-A2 specificity can be divided into at least three subtypes using CTLs specific for the HLA-A2 antigen. Moreover, CTLs specific for an HLA-A2 subtype could be induced when responder cells expressed a different HLA-A2 subtype antigen. On the basis of several family studies, we conclude that the subtype HLA-A2 antigens are inherited in a codominant way.  相似文献   

4.
We have in this work mapped epitopes and HLA molecules used in human T cell recognition of the Mycobacterium leprae LSR protein antigen. HLA typed healthy subjects immunized with heat killed M. leprae were used as donors to establish antigen reactive CD4+ T cell lines which were screened for proliferative responses against overlapping synthetic peptides covering the C-terminal part of the antigen sequence. By using this approach we were able to identify two epitope regions represented by peptide 2 (aa 29-40) and peptide 6 (aa 49-60), of which the former was mapped in detail by defining the N- and C-terminal amino acid positions necessary for T cell recognition of the core epitope. MHC restriction analysis showed that peptide 2 was presented to T cells by allogeneic cells coexpressing HLA-DR4 and DRw53 or DR7 and DRw53. In contrast, peptide 6 was presented to T cells only in the context of HLA-DR5 molecules. In conclusion, the M. leprae LSR protein antigen can be recognized by human T cells in the context of multiple HLA-DR molecules, of which none are reported to be associated with the susceptibility to develop leprosy. The results obtained are in support of using the LSR antigen in subunit vaccine design.  相似文献   

5.
The antigen receptor on T cells (TCR) has been predicted to have a structure similar to a membrane-anchored form of an immunoglobulin F(ab) fragment. Virtually all of the conserved amino acids that are important for inter- and intramolecular interactions in the VH-VL pair are also conserved in the TCR V alpha and V beta chains. A molecular model of the TCR has been constructed by homology and we have used the information from this, as well as the earlier structural predictions of others, to study the basis for specificity. Specifically, regions of a TCR cloned from an antigen-specific T cell were stitched into the corresponding framework of a second TCR. Results indicate that the substitution of amino acid sequences corresponding to the complementarity determining regions (CDRs) of immunoglobulin can convey the specificity for antigen and major histocompatibility complex molecules. These data are consistent with a role, but not an exclusive role, for CDR3 in antigen peptide recognition.  相似文献   

6.
Human alloimmune cytotoxic T cells, sensitized selectively against the HLA-A2 antigen, were tested on a panel of selected target cells. Five HLA-A2 positive outlier cells could be identified. These outlier cells were only weakly lysed by HLA-A2 specific CTLs, although they were serologically indistinguishable from the other HLA-A2 positive, strongly lysed target cells. Furthermore, it was found that the outlier cells were poor cold target inhibitors in contrast to the other HLA-A2 positive target cells, which showed adequate inhibition of specific lysis of HLA-A2 positive target cells. Population studies indicate that the frequency of such HLA-A2 outlier cells may be approximately 10%.  相似文献   

7.
During the course of screening new T-H-2 region congenic strains of mice constructed from the C57BL/6 and B6-H-2k strains, a new cell surface polymorphism, designated dtc-1, was identified by cell-mediated lympholysis techniques. The dtc-1 antigen can be found on both Con A- and LPS-stimulated lymphoblasts, peritoneal macrophages, and SV40-transformed mouse embryo fibroblasts. Lysis of dtc-1+ targets by CTL is H-2Dk restricted. All inbred strains tested are dtc-1+, with the exception of the B6-H-2k strain, which is dtc-1-, and several congenic strains directly derived from B6-H-2k. Because B6/Boy and AKR/Boy, the parents of the B6-H-2k strain, are dtc-1+, the dtc-1- phenotype may be the result of mutation in the locus specifying the cell surface molecule that carries this antigen. Segregation analysis of the dtc-1+/dtc-1- polymorphism demonstrated that this locus is not linked to T or H-2. The dtc-1 antigen thus identifies yet another cell surface polymorphism and adds another immunologically defined genetic marker to the murine genome. Furthermore, the dtc-1 system indicates the need for reevaluation and restandardization of congenic strains of mice derived from the B6-H-2k congenic strain.  相似文献   

8.
The specificity of in vitro induced human influenza-immune cytotoxic effector cells was analyzed with respect to recognition of HLA-A and -B-linked gene products. The influenza-immune cytotoxic activity observed on panels of virus-infected targets demonstrated that virus-immune effectors preferentially lyse targets with which they share HLA-A or -B specificities. Virus-immune effectors from certain donors recognized virus in conjunction with some, but not all, of their self HLA-A and -B antigens. Among donors who share a given HLA antigen (such as A2 or B7), there are differences in the ability of their virus-immune T cells to recognize the shared antigen. Virus-infected target cells from HLA-A2 or -B7 "nonresponder" donors could be lysed by virus-immune T cells obtained from other donors who shared only the HLA-A2 or -B7 antigen with these target cells. These observations suggest that the absence of cytotoxic T cell responses by some donors to influenza virus in conjunction with HLA-A2 or -B7 is not due to control by the structural genes that code for these HLA antigens, but rather may result from control by regulatory genes that act at the level of the responder and/or stimulator cell. The results are discussed in the context of Ir gene regulation of human T cell responses.  相似文献   

9.
In this report, we describe an experimental strategy for analyzing the interaction of nominal antigen with antigen-specific T cell clones. Our approach was based on the notion that low affinity interactions between nominal antigen and T cell antigen receptors might be detected by using a highly multivalent form of the antigen in which a large number of identical, appropriately spaced epitopes are attached to a polymer backbone. Antigens of this kind should be capable of multivalent binding to receptors on the T cell, resulting in a marked enhancement of the overall avidity of the interaction. To examine this possibility, we established a series of murine cytolytic T cell (Tc) clones specific for the readily detectable hapten fluorescein isothiocyanate (FL). These clones lysed FL-conjugated target cells in an antigen-specific fashion and also showed specificity for target cell MHC gene products. The interaction of these clones with the nominal antigen FL was assessed by flow cytometry, using a series of water-soluble FL-conjugated polymers varying in polymer backbone and FL isomer. High m.w. (600 to 2000 Kd) polymers of acrylamide, dextran, or Ficoll conjugated with 300 to 800 FL groups/molecule bound specifically to anti-FL Tc clones. There was little binding to syngeneic spleen cells, thymocytes, noncytolytic T cell clones, or T cell clones specific for other haptens such as NIP. Polymer concentrations in the 1 to 10 micrograms/ml range produced readily detectable binding within minutes at 20 degrees C, and the binding approached plateau levels at polymer concentrations of between 100 and 300 micrograms/ml. Studies with closely related FL isomers showed that the same antigen fine specificity was operative in both lysis of FL-conjugated target cells and in binding of FL-conjugated polymers. The functional significance of the observed binding was assessed by measuring the effect of FL-conjugated polymers on lymphokine secretion by the clones. High m.w. FL-conjugated polymers caused a dose-dependent increase in the production of macrophage activation factor (MAF) by anti-FL Tc clones, but did not increase MAF production by an NIP-specific clone. In contrast, concanavalin A induced MAF production by both FL-specific and NIP-specific clones. Thus, the observed binding is both specific and functionally significant. These results suggest that soluble nominal antigen, in an appropriately multivalent form, can bind specifically to antigen receptors on Tc clones.  相似文献   

10.
11.
Herpesviruses are thought to be highly genetically stable, and their use as vaccine vectors has been proposed. However, studies of the human gammaherpesvirus, Epstein-Barr virus, have found viral isolates containing mutations in HLA class I-restricted epitopes. Using murine gammaherpesvirus 68 expressing ovalbumin (OVA), we examined the stability of a gammaherpesvirus antigenic locus under strong CD8 T cell selection in vivo. OVA-specific CD8 T cells selected viral isolates containing mutations in the OVA locus but minimal alterations in other genomic regions. Thus, a CD8 T cell response to a gammaherpesvirus-expressed antigen that is not essential for replication or pathogenesis can result in selective mutation of that antigen in vivo. This finding may have relevance for the use of herpesvirus vectors for chronic antigen expression in vivo.  相似文献   

12.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

13.
Spleen cells from C57BL/6 (B6) mice generate a strong in vitro cytotoxic T-lymphocyte (CTL) response specific for vesicular stomatitis virus (VSV). Spleen cells from VSV-primed B6-H-2bm3 (bm3) mice, which have a mutation in H-2Kb, require approximately 10-fold more UV-inactivated VSV to generate in vitro secondary anti-VSV CTL, compared with spleen cells from primed B6 mice. Anti-VSV CTL elicited in both bm3 and B6 mice are primarily specific for the viral nucleocapsid protein (N protein), as demonstrated by using recombinant vaccinia viruses that express the VSV N protein. bm3 CTL were found to exhibit only a very low level of lytic activity when tested against autologous VSV-infected concanavalin A spleen cell blasts as well as several H-2b tumor cell lines. The weak anti-VSV response of bm3 CTL was found to be the result of a combination of inefficient recognition of VSV-infected target cells and decreased elicitation of secondary effector cells. VSV-infected bm3 target cells were not killed as well as B6 targets by either bm3 or B6 effectors. This is because of the inefficient recognition of targets, as demonstrated by the fact that VSV-infected bm3 cells were unable to competitively inhibit the lysis of VSV-infected B6 target cells by either bm3 or B6 effectors. By using cells from recombinant mice, it was shown that the CTL response restricted by H-2Kb was low in the bm3 mice, compared with that of the B6 mice. However, the H-2Db-restricted CTL activity was similarly low in both the B6 and bm3 mice. The possibility that the low response to VSV-infected bm3 cells is caused by differences between the bm3 and B6 cells in expression of either viral antigens or H-2K was investigated by radiolabeling and immunoprecipitation. VSV-infected B6 and bm3 cells were found to express equivalent levels of both viral antigens and H-2K. These results indicate that the bm3 mutation alters a functional site on the H-2Kb molecule that is involved in the recognition of VSV-infected cells. The observation that elicitation of bm3 CTL can occur at high antigen doses further suggests that the bm3 mutation results in a lower affinity of H-2K either for viral antigen or for receptor sites on the CTL.  相似文献   

14.
Mice were immunized intravenously with 4 × 107 thymocytes from Thy-1 disparate, eitherH-2-compatible orH- 2-incompatible donors. The magnitude of the anti-Thy-1.1 response was measured by determining the number of PFC in spleens of animals 6 days after immunization. Regardless of the origin of immunizing and target thymocytes, the assay employed detected exclusively PFC-producing antibodies to the Thy-1.1 antigen. In almost all instances,H-2-compatible thymocytes elicited a significantly higher response than didH-2-incompatible thymocytes, although the latter occasionally evoked a high response. TheH-2 incompatibility between donor and recipient appeared to be responsible for the differences in responsiveness of the standard inbred mice and theirH-2 mutants immunized with thymocytes compatible with standard inbred strains. The phenomenon observed appears to have several features in common with antigenic competition. We propose that the requirement forH-2 compatibility in the anti-Thy-1.1 response may be the expression of a general requirement of T cells to recognize an antigen in the context of the H-2 molecule.  相似文献   

15.
The characterization of human T cell antigenic sites on influenza A nucleoprotein (NP) is important for subunit vaccine development for either antibody boosting during infection or to stimulate T cell-mediated immunity. To identify such sites, 31 synthetic peptides that cover more than 95% of the amino acid sequence from NP of influenza A/NT/60/68 virus were tested for their ability to stimulate PBL from 42 adult donors. The most frequently recognized region was covered by a peptide corresponding to residues 206-229 of NP, with 20/42 (48%) of responders. In many individuals this was also one of the peptides that stimulated the strongest T cell responses. Other regions that were also frequently recognized were 341-362 by 13/42 (30%), 297-318 by 10/42 (23%), and 182-205 by 9/42 (21%) of individuals. These peptides covered highly conserved regions in NP of influenza A viruses, suggesting that they could be useful in boosting cross-reactive immunity against the known type A virus strains. In order to define the class II restriction molecules used to present particular T cell epitopes, 22 persons from the donor panel were HLA-typed. The majority of persons who expressed DR2, and proliferated to NP also responded to the major immunodominant region 206-229. In addition, this peptide was also immunodominant in the one person expressing DRw13. The observation that recognition of this peptide is associated with DR2 was confirmed by using short term T cell lines and APC from a panel of typed donors. Further results with virus-specific T cell lines and clones and transfected L cells expressing DR molecules showed that DR1 could also present this peptide. Therefore the results suggest that recognition of 206-229 is associated with at least three different DR haplotypes and this may explain the high frequency with which this peptide is recognized in the population. The fine specificity of the response to peptide 206-229 was distinct when presented by DR1- or DR2-expressing APC. The DR1 response was dependent on the N terminus, and the DR2 response was directed to the C terminus of the peptide.  相似文献   

16.
Simian virus 40 (SV40) large T antigen can immortalize a wide variety of mammalian cells in culture. We have taken advantage of this property of T antigen to use it as a carrier for the expression of cytotoxic T-lymphocyte (CTL) recognition epitopes. DNA sequences corresponding to an H-2Db-restricted SV40 T-antigen site I (amino acids 205 to 215) were translocated into SV40 T-antigen DNA at codon positions 350 and 650 containing EcoRI linkers. An H-2Kb-restricted herpes simplex virus glycoprotein B epitope (amino acids 498 to 505) was also expressed in SV40 T antigen at positions 350 and 650. Primary C57BL/6 mouse kidney cells were immortalized by transfection with the recombinant and wild-type T-antigen DNA. Clonal isolates of cells expressing chimeric T antigens were shown to be specifically susceptible to lysis by CTL clones directed to SV40 T-antigen site I and herpes simplex virus glycoprotein B epitopes, indicating that CTL epitopes restricted by two different elements can be processed, presented, and recognized by the epitope-specific CTL clones. Our results suggest that SV40 T antigen can be used as a carrier protein to express a wide variety of CTL epitopes.  相似文献   

17.
18.
The dominant immune response to rat myelin basic protein in H-2u mice is directed against the acetylated, N-terminal peptide Ac1-11 (AcASQKR-PSQRHG). This peptide causes encephalomyelitis on injection into mice of the H-2u haplotype. Only two residues of the peptide are required for ligation of the TCR from an Ac1-11-specific T cell hybridoma. Proline at position 6 could not be substituted by any other L-amino acid, whereas glutamine at position 3 could be replaced by phenylalanine, histidine, methionine, or tyrosine. Cross-reactive recognition of these residues appears to be specific, because increasing the affinity of each analogue for its MHC restriction element, by replacing lysine with tyrosine at position 4, did not alter the pattern of cross-reactivity. For the majority of substitutions at this position, a lack of stimulation could not be explained by failure to bind to I-Au. However, competition binding studies showed that introduction of proline at position 3 reduced the efficacy of binding to I-Au. Cross-reactive analogues of Ac1-11 were injected into H-2u mice to test the extent to which cross-reactive T cell activation might lead to autoimmune disease in this model. An analogue containing methionine at position 3 caused clinical experimental autoimmune encephalomyelitis in a small percentage of H-2u mice.  相似文献   

19.
20.
In an attempt to distinguish simian virus 40 (SV40) large T antigen (T) binding to ATP from hydrolysis, specific mutations were made in the ATP-binding site of T according to our model for the site (M. K. Bradley, T. F. Smith, R. H. Lathrop, D. M. Livingston, and T. A. Webster, Proc. Natl. Acad. Sci. USA 84:4026-4030, 1987). Two acidic residues predicted to make contact with the magnesium phosphate were changed to alanines. The mutated T gene was completely defective for viral DNA synthesis and for virion production, and it was dominant defective for viral DNA replication. The defective T gene encoded a stable product (2905T) that oncogenically transformed mouse cell lines. 2905T, immunoprecipitated from transformed-cell extracts, bound SV40 origin DNA specifically and, surprisingly, it was active as an ATPase. A recombinant baculovirus was constructed for the production and purification of the mutant protein for detailed biochemical analyses. 2905T had only 10% of the ATPase and helicase of wild-type T. The Km of 2905T for ATP in ATPase assays was the same as the Km of wild-type T. ATP activated the ATPase activity of wild-type T, but not of 2905T. As tested by gel bandshift assay, 2905T bound to SV40 origin DNA and to individual sites I and II with affinities similar to that of the wild type. However, ATP did not modulate the DNA-binding activity of mutant T to site II. Therefore, this mutation in the ATP-binding site in T resulted in defects in the interaction between the protein and ATP that appeared to be responsible for the determination of the active state of T for DNA binding versus ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号