首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of anisogamy   总被引:3,自引:0,他引:3  
Anisogamy is the occurrence within a population of two gamete types of different size, a very common condition both in plants and in animals. This paper shows conditions that anisogamy without disassortative fusion (pseudoanisogamety) should be favoured by individual natural selection; the results obtained analytically below are in basic agreement with those obtained through the use of numerical techniques by Parker, Baker &; Smith (1972). Major results are as follows. First, a necessary condition that gametes of intermediate size should be least fit is that zygote survival should increase more steeply than linearly with zygote size, over at least part of the range of zygote size. Second, stable genetic equilibria involving two alleles may be established, whether these alleles determine gamete size in the haploid or in the diploid phase. Third, if the difference in size between the two gamete types persisting at equilibrium is very great, the two types of gamete-producers will be nearly equally frequent at equilibrium. These results are interpreted to mean that frequency-dependent natural selection may maintain a genetic equilibrium involving two gamete types, provided that the frequency-independent criterion that zygote survival should increase more steeply than linearly with zygote size is satisfied. The importance of zygote size in protists and in multicellular organisms is briefly discussed, but satisfactory quantitative data are lacking. The anisogamy generated in this way is always associated with sexual bipolarity, and an explanation is offered. These arguments lead to the prediction that increasing gamete dimorphism will be associated with increasing vegetative complexity, and a number of phyletic series among the algae, fungi and protozoa were reviewed with this in mind. The Volvocales provide an excellent example of the expected correlation, but other series are less satisfactory. On the whole, the comparative evidence is held to support the predictions of Parker et al., but exceptions to the rule are so numerous that a more detailed examination of the aberrant cases is very desirable.  相似文献   

2.
A common outcome of disruptive selection experiments between two differentiated populations which produce disadvantageous hybrids is an increase in homogamy. Experiments reported here result in another outcome when ‘classical’ selection experiments are redesigned. In these modified experiments, frequencies of genotypes in the mating population were not artificially maintained at parity but were instead determined from progeny proportions in the previous generation. In these selection lines another outcome, apart from an increase in homogamy, was demonstrated. Under a high selection coefficient against heterozygotes, elimination of a homozygote and the corresponding fixation of the other was observed. No selection line demonstrated the maintenance of two differentiated populations concurrently with the selection process of heterozygote disadvantage. A high number of generations of selection under this population genetical process is necessary to increase differences between two populations. However, the instability of gene frequencies which results in fixation or elimination of a homozygote is shown to be extremely rapid by comparison. Classical experiments were repeated and after 21 generations of selection there was no increase in divergence. For lower selection coefficients, high levels of introgression are apparent, and hence the genetical distinctness of the two populations decreases over time. This is in addition to the problem of an unstable equilibrium under selection against heterozygotes. Both aspects are important but not previously considered in experimental evidence for speciation models for which their implications are discussed.  相似文献   

3.
4.
5.
The data are reviewed on the population structure and evolutionary dynamics of the nodule bacteria (rhizobia) which are among the most intensively studied microorganisms. High level of the population polymorphism was demonstrated for the rhizobia populations using the enzyme electrophoresis (MLEE profiles). The average value of Nei's coefficient of heterogeneity (H = 1 - sigma pi2 [n/(n - 1)]) were: 0.590 for rhizobia (Rhizobium, Bradyrhizobium), 0.368 for enterobacteria (Escherichia, Salmonella, Shigella) and 0.452 for pathogenic bacteria (Bordetella, Borrelia, Erysipelothrix, Haemophilus, Helicobacter, Listeria, Mycobacterium, Neisseria, Staphylococcus) populations. In spite of being devoid of the effective systems for the gene conjugative transfer, many rhizobia populations possess an essentially panmictic structure. However, the enterobacteria populations in which the gene transfer may be facilitated due to the conjugative F- and R-factors, usually display the clonal population structure. The legume host plant is proved to be a key factor that determines the high levels of polymorphism and of panmixis as well as high evolutionary rates of the symbiotic bacteria populations. The host may ensure: a) an increase in mutation and gene transfer frequencies; b) stimulation of the competitive (selective) processes in both symbiotic and free-living rhizobia populations. A "cyclic" model of the rhizobia microevolution is presented which allows to assess the inputs the interstrain competition for the saprophytic growth and for the host nodulation into evolution of a plant-associated rhizobia population. The nodulation competitiveness in the rhizobia populations is responsible for the frequency-dependent selection of the rare genotypes which may arise in the soil bacterial communities as a result of the transfer of symbiotic (sym) genes from virulent rhizobia strains to either avirulent rhizobia or to the other (saprophytic, phytopathogenic) bacteria. Therefore, the nodulation competitiveness may ensure: a) panmictic structure of the natural rhizobia populations; b) high taxonomic diversity of rhizobia which was apparently caused by a broad sym gene expansion in the soil bacterial communities. The kin selection models are presented which explain evolution of the "altruistic" (essential for the host plant, but not for the bacteria themselves) symbiotic traits (e.g., the ability for symbiotic nitrogen fixation and for differentiation into non-viable bacteroids) in the rhizobia populations. These models are based on preferential multiplication of the nitrogen-fixing clones either in planta (due to an elevated supply of the nitrogen-fixing nodules with photosynthates) or ex planta (due to a release of the rhizopines from the nitrogen-fixing nodules). Speaking generally, interactions with the host plants provide a range of mechanisms increasing a genetic heterogeneity and an evolutionary potential in the associated rhizobia populations.  相似文献   

6.
Despite the many successes of cancer research, we lack the framework necessary to predict the ratio of familial (inherited) to sporadic (non-inherited) cancers. An evolutionary model of multistage carcinogenesis provides this framework by demonstrating that the number of tumour suppressor loci (TSLs) preventing cancer in a given tissue is expected to depend upon the tissue's vulnerability to pre-reproductive somatic mutation. Since this vulnerability increases with tissue size, single gene control of human cancer may be restricted to retinoblastoma, a cancer of the tiny embryonic retina. The model is used to estimate the frequency of mutant alleles causing inherited cancers, based on the population genetics of the mutation-selection balance between new mutations arising and selection that eliminates them. For each specific cancer, this balance is determined by the effectiveness with which pre-reproductive cancer is suppressed in the non-mutant genotype characteristic of that population. Effectiveness depends on an interaction between the number of TSLs suppressing the cancer and factors determining the tissue-wide somatic mutation rate, such as tissue size and number of pre-reproductive cell divisions. The model predicts that the commonest pre-reproductive cancers will have the lowest proportion of familial cases, and that cancers associated with the most TSLs will have the highest post-reproductive incidence but no elevated pre-reproductive risk (a pattern seen in human epithelial cancers).  相似文献   

7.
8.
9.
Adherents to the Jewish faith have resided in numerous geographic locations over the course of three millennia. Progressively more detailed population genetic analysis carried out independently by multiple research groups over the past two decades has revealed a pattern for the population genetic architecture of contemporary Jews descendant from globally dispersed Diaspora communities. This pattern is consistent with a major, but variable component of shared Near East ancestry, together with variable degrees of admixture and introgression from the corresponding host Diaspora populations. By combining analysis of monoallelic markers with recent genome-wide variation analysis of simple tandem repeats, copy number variations, and single-nucleotide polymorphisms at high density, it has been possible to determine the relative contribution of sex-specific migration and introgression to map founder events and to suggest demographic histories corresponding to western and eastern Diaspora migrations, as well as subsequent microevolutionary events. These patterns have been congruous with the inferences of many, but not of all historians using more traditional tools such as archeology, archival records, linguistics, comparative analysis of religious narrative, liturgy and practices. Importantly, the population genetic architecture of Jews helps to explain the observed patterns of health and disease-relevant mutations and phenotypes which continue to be carefully studied and catalogued, and represent an important resource for human medical genetics research. The current review attempts to provide a succinct update of the more recent developments in a historical and human health context.  相似文献   

10.
11.
Among the leading causes of death in African children is cerebral malaria caused by the parasitic protozoan Plasmodium falciparum. Endemic forms of this disease are thought to have originated in central Africa 5000-10000 years ago, coincident with the innovation of slash-and-burn agriculture and the diversification of the Anopheles gambiae complex of mosquito vectors. Population genetic studies of P. falciparum have yielded conflicting results. Some evidence suggests that today's population includes multiple ancient lineages pre-dating human speciation. Other evidence suggests that today's population derives from only one, or a small number, of these ancient lineages. Resolution of this issue is important for the evaluation of the long-term efficacy of drug and immunological control strategies.  相似文献   

12.
The contribution of genetics and population studies to physical anthropology as reflected in the pages of our Journal is traced since its establishment in 1918. Major trends include the use of more genetic polymorphisms, the search for natural selection and genetic drift, the unraveling of population structure in a wide variety of ecological niches, and the recognition of the role of culture in human biology. Nonhuman primates have also been explored from the viewpoint of population genetic. Emphasis has been increasingly on process rather than classification.  相似文献   

13.
P C Phillips  N A Johnson 《Genetics》1998,150(1):449-458
Synthetic lethals are variants at different loci that have little or no effect on viability singly but cause lethality in combination. The importance of synthetic lethals and, more generally, of synthetic deleterious loci (SDL) has been controversial. Here, we derive the expected frequencies for SDL under a mutation-selection balance for the complete haploid model and selected cases of the diploid model. We have also obtained simple approximations that demonstrate good fit to exact solutions based on numerical iterations. In the haploid case, equilibrium frequencies of carrier haplotypes (individuals with only a single mutation) are comparable to analogous single-locus results, after allowing for the effects of linkage. Frequencies in the diploid case, however, are much higher and more comparable to the square root of the single-locus results. In particular, when selection operates only on the double-mutant homozygote and linkage is not too tight, the expected frequency of the carriers is approximately the quartic root of the ratio between the mutation rate and the selection coefficient of the synthetics. For a reasonably wide set of models, the frequencies of carriers can be on the order of a few percent. The equilibrium frequencies of these deleterious alleles can be relatively high because, with SDL, both dominance and epistasis act to shield carriers from exposure to selection. We also discuss the possible role of SDL in maintaining genetic variation and in hybrid breakdown.  相似文献   

14.
The molecular population genetics of regulatory genes   总被引:19,自引:0,他引:19  
Regulatory loci, which may encode both trans acting proteins as well as cis acting promoter regions, are crucial components of an organism's genetic architecture. Although evolution of these regulatory loci is believed to underlie the evolution of numerous adaptive traits, there is little information on natural variation of these genes. Recent molecular population genetic studies, however, have provided insights into the extent of natural variation at regulatory genes, the evolutionary forces that shape them and the phenotypic effects of molecular regulatory variants. These recent analyses suggest that it may be possible to study the molecular evolutionary ecology of regulatory diversification by examining both the extent and patterning of regulatory gene diversity, the phenotypic effects of molecular variation at these loci and their ecological consequences.  相似文献   

15.
16.
Bacterial population genetics is the study of natural bacterial genetic diversity arising from evolutionary processes. The roles of molecular mistakes, restriction–modification, plasmids and gene transfer in bacteria are also important components of population genetics. These aspects are of considerable scientific importance from a fundamental perspective, because of the short generation times of bacteria, their microscopic cell size, the large population sizes bacteria can achieve and their different mechanisms of gene transfer.  相似文献   

17.
18.
Bacterial population genetics is the study of natural bacterial genetic diversity arising from evolutionary processes. The roles of molecular mistakes, restriction–modification, plasmids and gene transfer in bacteria are also important components of population genetics. These aspects are of considerable scientific importance from a fundamental perspective, because of the short generation times of bacteria, their microscopic cell size, the large population sizes bacteria can achieve and their different mechanisms of gene transfer.  相似文献   

19.
A popular theory has proposed that anisogamy originated through disruptive selection acting on an ancestral isogamous population, though recent work has emphasized the importance of other factors in its evolution. We re-examine the disruptive selection theory, starting from an isogamous population with two mating types and taking into account the functional relationship, g(m), between the fitness of a gamete and its size, m, as well as the relationship, f(S), between the fitness of a zygote and its size, S. Evolutionary game theory is used to determine the existence and continuous stability of isogamous and anisogamous strategies for the two mating types under various models for the two functions g(m) and f(S). In the ancestral unicellular state, these two functions are likely to have been similar; this leads to isogamy whether they are sigmoidal or concave, though in the latter case allowance must be made for a minimal gamete size. The development of multicellularity may leave g(m) relatively unchanged while f(S) moves to the right, leading to the evolution of anisogamy. Thus, the disruptive selection theory provides a powerful explanation of the origin of anisogamy, though other selective forces may have been involved in the subsequent specialization of micro- and macrogametes.  相似文献   

20.
Modern biology increasingly integrates disparate disciplines. Here, Steve Paterson and Mark Viney examine the interface between epidemiology and population genetics. They argue that infection and inheritance can be considered as analogous processes, and that epidemiology and population genetics share many common features. They consider the potential for existing population genetic theory to dissect epidemiological patterns in field studies and they consider other relationships between genetics and epidemiology that provide a research challenge for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号