首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inclusion bodies of aggregated mutant huntingtin (htt) fragments are a neuropathological hallmark of Huntington disease (HD). The molecular chaperones Hsp70 and Hsp40 colocalize to inclusion bodies and are neuroprotective in HD animal models. How these chaperones suppress mutant htt toxicity is unclear but might involve direct effects on mutant htt misfolding and aggregation. Using size exclusion chromatography and atomic force microscopy, we found that mutant htt fragments assemble into soluble oligomeric species with a broad size distribution, some of which reacted with the conformation-specific antibody A11. Hsp70 associated with A11-reactive oligomers in an Hsp40- and ATP-dependent manner and inhibited their formation coincident with suppression of caspase 3 activity in PC12 cells. Thus, Hsp70 and Hsp40 (DNAJB1) dynamically target specific subsets of soluble oligomers in a classic ATP-dependent reaction cycle, supporting a pathogenic role for these structures in HD.  相似文献   

2.
3.
Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.  相似文献   

4.
The polyglutamine (polyQ) diseases such as Huntington’s disease (HD), are neurodegenerative diseases caused by proteins with an expanded polyQ stretch, which misfold and aggregate, and eventually accumulate as inclusion bodies within neurons. Molecules that inhibit polyQ protein misfolding/aggregation, such as Polyglutamine Binding Peptide 1 (QBP1) and molecular chaperones, have been shown to exert therapeutic effects in vivo by crossing of transgenic animals. Towards developing a therapy using these aggregation inhibitors, we here investigated the effect of viral vector-mediated gene therapy using QBP1 and molecular chaperones on polyQ disease model mice. We found that injection of adeno-associated virus type 5 (AAV5) expressing QBP1 or Hsp40 into the striatum both dramatically suppresses inclusion body formation in the HD mouse R6/2. AAV5-Hsp40 injection also ameliorated the motor impairment and extended the lifespan of R6/2 mice. Unexpectedly, we found even in virus non-infected cells that AAV5-Hsp40 appreciably suppresses inclusion body formation, suggesting a non-cell autonomous therapeutic effect. We further show that Hsp40 inhibits secretion of the polyQ protein from cultured cells, implying that it inhibits the recently suggested cell-cell transmission of the polyQ protein. Our results demonstrate for the first time the therapeutic effect of Hsp40 gene therapy on the neurological phenotypes of polyQ disease mice.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to interact with proteins containing the polyglutamine (polyQ) domain. The present study was undertaken to evaluate the potential contributions of the polyQ and polyproline (polyP) domains to the co-localization of mutant huntingtin (htt) and GAPDH. Overexpression of N-terminal htt (1-969 amino acids) with 100Q and 46Q (httl-969- 100Q and httl-969-46Q, mutant htt) in human mammary gland carcinoma MCF-7 cells formed more htt aggregates than that of httl-969-18Q (wild-type htt). The co-localization of GAPDH with htt aggregates was found in the cells expressing mutant but not wild-type htt. Deletion of the polyP region in the N-terminal htt had no effect on the co-localization of GAPDH and mutant htt aggregates. These results suggest that the polyQ domain, but not the polyP domain, plays a role in the sequestration of GAPDH to aggregates by mutant htt. This effect might contribute to the dysfunction of neurons caused by mutant htt in Huntington's disease.  相似文献   

6.
7.
In Saccharomyces cerevisae, expanded polyglutamine (polyQ) fragments are assembled into discrete cytosolic aggregates in a process regulated by the molecular chaperones Hsp26, Hsp70, Hsp90, and Hsp104. To better understand how the different chaperones might cooperate during polyQ aggregation, we used sequential immunoprecipitations and mass spectrometry to identify proteins associated with either soluble (Q25) or aggregation-prone (Q103) fragments at both early and later times after induction of their expression. We found that Hsp26, Hsp70, Hsp90, and other chaperones interact with Q103, but not Q25, within the first 2 h. Further, Hsp70 and Hsp90 appear to be partially released from Q103 prior to the maturation of the aggregates and before the recruitment of Hsp104. To test the importance of this seemingly ordered process, we used a chemical probe to artificially enhance Hsp70 binding to Q103. This treatment retained both Hsp70 and Hsp90 on the polyQ fragment and, interestingly, limited subsequent exchange for Hsp26 and Hsp104, resulting in incomplete aggregation. Together, these results suggest that partial release of Hsp70 may be an essential step in the continued processing of expanded polyQ fragments in yeast.  相似文献   

8.
Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.  相似文献   

9.
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by expansion of a polyglutamine tract in the huntingtin protein (htt) that mediates formation of intracellular protein aggregates. In the brains of HD patients and HD transgenic mice, accumulation of protein aggregates has been causally linked to lesions in axo-dendritic and synaptic compartments. Here we show that dendritic spines - sites of synaptogenesis - are lost in the proximity of htt aggregates because of functional defects in local endosomal recycling mediated by the Rab11 protein. Impaired exit from recycling endosomes (RE) and association of endocytosed protein with intracellular structures containing htt aggregates was demonstrated in cultured hippocampal neurons cells expressing a mutant htt fragment. Dendrites in hippocampal neurons became dystrophic around enlarged amphisome-like structures positive for Rab11, LC3 and mutant htt aggregates. Furthermore, Rab11 overexpression rescues neurodegeneration and dramatically extends lifespan in a Drosophila model of HD. Our findings are consistent with the model that mutant htt aggregation increases local autophagic activity, thereby sequestering Rab11 and diverting spine-forming cargo from RE into enlarged amphisomes. This mechanism may contribute to the toxicity caused by protein misfolding found in a number of neurodegenerative diseases.  相似文献   

10.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

11.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.  相似文献   

12.
Huntington disease (HD) is caused by expansion of a polyglutamine (polyQ) domain in the protein known as huntingtin (htt), and the disease is characterized by selective neurodegeneration. Expansion of the polyQ domain is not exclusive to HD, but occurs in eight other inherited neurodegenerative disorders that show distinct neuropathology. Yet in spite of the clear genetic defects and associated neurodegeneration seen with all the polyQ diseases, their pathogenesis remains elusive. The present review focuses on HD, outlining the effects of mutant htt in the nucleus and neuronal processes as well as the role of cell-cell interactions in HD pathology. The widespread expression and localization of mutant htt and its interactions with a variety of proteins suggest that mutant htt engages multiple pathogenic pathways. Understanding these pathways will help us to elucidate the pathogenesis of HD and to target therapies effectively.  相似文献   

13.
Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575-850 kDa in control brain and at 650-885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1-17)) and increased when lysates were treated with denaturants (SDS, 8 M urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670-880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43-50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 M urea + DTT. Native full-length mutant htt in embryonic HD(140Q/140Q) mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer.  相似文献   

14.
The role of molecular chaperones in human misfolding diseases   总被引:1,自引:0,他引:1  
Sarah A. Broadley 《FEBS letters》2009,583(16):2647-144
Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.  相似文献   

15.
The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. Using a proteomics approach, we have identified BAG2, a previously uncharacterized BAG domain-containing protein, as a common component of CHIP holocomplexes in vivo. Binding assays indicate that BAG2 associates with CHIP as part of a ternary complex with Hsc70, and BAG2 colocalizes with CHIP under both quiescent conditions and after heat shock. In vitro and in vivo ubiquitylation assays indicate that BAG2 is an efficient and specific inhibitor of CHIP-dependent ubiquitin ligase activity. This activity is due, in part, to inhibition of interactions between CHIP and its cognate ubiquitin-conjugating enzyme, UbcH5a, which may in turn be facilitated by ATP-dependent remodeling of the BAG2-Hsc70-CHIP heterocomplex. The association of BAG2 with CHIP provides a cochaperone-dependent regulatory mechanism for preventing unregulated ubiquitylation of misfolded proteins by CHIP.  相似文献   

16.
Huntington's disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.  相似文献   

17.
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 N-terminal amino acids of htt have been shown to further modulate aggregation. Additionally, these 17 amino acids appear to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-lengths (35Q, 46Q, 51Q, and myc-53Q) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. Furthermore, the addition of an N-terminal myc-tag to the htt exon1 fragments impeded the interaction of htt with the bilayer.  相似文献   

18.
Polyglutamine (polyQ)-expansion proteins cause protein aggregation in the cytosol and nucleus of neuronal cells, leading to neurodegenerative diseases. For example, expansion of the polyQ tract (>40 repeats) in huntingtin (htt) proteins leads to Huntington disease, while polyQ-expanded ataxins cause several types of ataxias. PolyQ-rich inclusions are found in neuronal cells of patients, suggesting that polyQ disease is caused by protein misfolding. However, the mechanisms by which polyQ-expansion proteins exert neuronal toxicity are largely unknown. Here, we review experimental procedures to analyze the roles of molecular chaperones in preventing polyQ aggregation and toxicity as well as to measure the characteristics and dynamics of polyQ aggregation, particularly focusing on cellular models and dynamic imaging of fluorescently-labeled polyQ-expansion proteins and their modulation by chaperones.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号