首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein C pathway is an important regulator of the blood coagulation system. Protein C may also play a role in inflammatory and immunomodulatory processes. Whether protein C or activated protein C affects lymphocyte migration and possible mechanisms involved was tested. Lymphocyte migration was studied by micropore filter assays. Lymphocytes that were pretreated with protein C (Ceprotin) or activated protein C (Xigris) significantly reduced their migration toward IL-8, RANTES, MCP-1, and substance P, but not toward sphingosine-1-phosphate. The inhibitory effects of protein C or activated protein C were reversed by Abs against endothelial protein C receptor and epidermal growth factor receptor. Evidence for the synthesis of endothelial protein C receptor by lymphocytes is shown by demonstration of receptor mRNA expression and detection of endothelial protein C receptor immunoreactivity on the cells' surface. Data suggest that an endothelial protein C receptor is expressed by lymphocytes whose activation with protein C or activated protein C arrests directed migration. Exposure of lymphocytes to protein C or activated protein C stimulates phosphorylation of Tyr845 of epidermal growth factor receptor, which may be relevant for cytoprotective effects of the protein C pathway.  相似文献   

2.
J T Huang  R J Schneider 《Cell》1991,65(2):271-280
Adenovirus (Ad) infection results in a marked inhibition of cellular protein synthesis that initiates during the late phase of the viral infectious cycle. We show that the mechanism used for suppression of cellular protein synthesis during cell cycle progression is exploited by Ad to repress host and enhance late viral mRNA translation. Discrimination between cellular and late Ad mRNAs and inhibition of host protein synthesis are shown to involve viral-mediated underphosphorylation of cap-binding protein (CBP) and subsequent inactivation of CBP complex, a large enzymatic complex required for cap-dependent mRNA translation. Late Ad mRNAs, like those of poliovirus, possess the unique ability to translate independent of a normal cap recognition process and do not require the activity of CBP complex. Inhibition of cellular translation by these two viruses is quite similar, except that whereas CBP complex is proteolytically degraded by poliovirus, it is functionally inactivated by Ad.  相似文献   

3.
We have previously reported on the cloning of XlEg5, a Xenopus laevis kinesin-related protein from the bimC family (Le Guellec, R., Paris, J., Couturier, A., Roghi, C., and Philippe, M. (1991) Mol. Cell. Biol. 11, 3395-3408) as well as pEg2, an Aurora-related serine/threonine kinase (Roghi, C., Giet, R., Uzbekov, R., Morin, N., Chartrain, I., Le Guellec, R., Couturier, A., Dorée, M., Philippe, M., and Prigent, C. (1998) J. Cell Sci. 111, 557-572). Inhibition of either XlEg5 or pEg2 activity during mitosis in Xenopus egg extract led to monopolar spindle formation. Here, we report that in Xenopus XL2 cells, pEg2 and XlEg5 are both confined to separated centrosomes in prophase, and then to the microtubule spindle poles. We also show that pEg2 co-immunoprecipitates with XlEg5 from egg extracts and XL2 cell lysates. Both proteins can directly interact in vitro, but also through the two-hybrid system. Furthermore immunoprecipitated pEg2 were found to remain active when bound to the beads and phosphorylate XlEg5 present in the precipitate. Two-dimensional mapping of XlEg5 tryptic peptides phosphorylated in vivo first confirmed that XlEg5 was phosphorylated by p34(cdc2) and next revealed that in vitro pEg2 kinase phosphorylated XlEg5 on the same stalk domain serine residue that was phosphorylated in metabolically labeled XL2 cells. The kinesin-related XlEg5 is to our knowledge the first in vivo substrate ever reported for an Aurora-related kinase.  相似文献   

4.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The human M phase phosphoprotein 1 (MPP1), previously identified through a screening of a subset of proteins specifically phosphorylated at the G2/M transition (Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L., and Westendorf, J. M. (1996) Mol. Biol. Cell 7, 1455-1469), is characterized as a plus-end-directed kinesin-related protein. Recombinant MPP1 exhibits in vitro microtubule-binding and microtubule-bundling properties as well as microtubule-stimulated ATPase activity. In gliding experiments using polarity-marked microtubules, MPP1 is a slow molecular motor that moves toward the microtubule plus-end at a 0.07 microm/s speed. In cycling cells, MPP1 localizes mainly to the nuclei in interphase. During mitosis, MPP1 is diffuse throughout the cytoplasm in metaphase and subsequently localizes to the midzone to further concentrate on the midbody. MPP1 suppression by RNA interference induces failure of cell division late in cytokinesis. We conclude that MPP1 is a new mitotic molecular motor required for completion of cytokinesis.  相似文献   

6.
7.
V Rogalsky  G Todorov  T Den  T Ohnuma 《FEBS letters》1992,304(2-3):153-156
Protein kinase C (PKC) activity and DNA synthesis were measured in human fetal bone marrow fibroblasts following treatment with tumor necrosis factor alpha (TNF alpha) (500 U/ml) or conditioned media containing natural cell proliferation inhibitor (CM-NCPI). Treatment with TNF alpha led to growth stimulation (120 +/- 7% of control in 24 h, 141 +/- 6% in 72 h). At the same time particulate PKC activity diminished, reaching 55 +/- 8% of control in 24 h and remaining at this level at 72 h. CM-NCPI treatment of the cells resulted in a decrease in DNA synthesis (by 39 +/- 6% in 2 h, by 58 +/- 5% in 24 h, and by 78 +/- 8% in 72 h). This was accompanied by a significant rise in particulate PKC activity which increased over 3-fold in 2 h, over 5-fold in 24 h, and up to 11-fold in 72 h. This 11-fold elevation was maintained after 2 week exposure of the fibroblasts to CM-NCPI. The PKC inhibitor neomycin abolished CM-NCPI induced growth inhibition, whereas PKC activator 12-O-tetradecanoylphorbol 13-acetate intensified it. These results suggest that CM-NCPI acts as PKC activator and that negative growth regulation by extracellular agents may involve stimulation of PKC activity.  相似文献   

8.
9.
The RL cell line is an EBV-negative, surface IgM, IgD-positive B lymphoma line, which is significantly growth arrested in the presence of acrylamide-linked antibodies to the surface IgM receptor. We demonstrate here that activation of protein kinase C (PKC) with PMA abrogates anti-IgM-induced phosphoinositide turnover and Ca2+ mobilization; however, growth inhibition is not affected. In addition, inhibitors of PKC are unable to reverse the anti-IgM-mediated growth inhibition. Two-dimensional gel electrophoresis reveals a different pattern of protein phosphorylation after treatment of RL with PMA or anti-IgM. These data strongly suggest that anti-IgM-induced growth inhibition does not rely on phospholipase C-mediated phosphoinositide turnover, Ca2+ mobilization, or PKC activation. On the other hand, the phosphatase inhibitor orthovanadate results in an augmentation of proteins phosphorylated on tyrosine and the growth inhibition which follows anti-IgM treatment. Furthermore, protein tyrosine kinase inhibitors, genistein and herbimycin A, are able to reverse the anti-IgM-induced inhibition of growth. These data demonstrate that multiple signaling pathways are activated by the interaction of anti-IgM with its ligand, and suggest that tyrosine kinase activation is a critical component of the inhibitory response.  相似文献   

10.
Kip1p is a mitotic spindle-associated kinesin-related protein in Saccharomyces cerevisiae that participates in spindle pole separation. Here, we define the domain arrangement and polypeptide composition of the Kip1p holoenzyme. Electron microscopy of rotary shadowed Kip1p molecules revealed two globular domains 14 nm in diameter connected by a 73-nm long stalk. When the Kip1p domain homologous to the kinesin motor domain was decorated with an unrelated protein, the diameter of the globular domains at both ends of the stalk increased, indicating that Kip1p is bipolar. Soluble Kip1p isolated from S. cerevisiae cells was homomeric, based on the similarity of the sedimentation coefficients of native Kip1p from S. cerevisiae and Kip1p which was purified after expression in insect cells. The holoenzyme molecular weight was estimated using the sedimentation coefficient and Stokes radius, and was most consistent with a tetrameric composition. Kip1p exhibited an ionic strength-dependent transition in its sedimentation coefficient, revealing a potential regulatory mechanism. The position of kinesin motor-related domains at each end of the stalk may allow Kip1p to cross-link either parallel or antiparallel microtubules during mitotic spindle assembly and pole separation.  相似文献   

11.
Lee YR  Liu B 《Current biology : CB》2000,10(13):797-800
The phragmoplast executes cytokinesis in higher plants. The major components of the phragmoplast are microtubules, which are arranged in two mirror-image arrays perpendicular to the division plane [1]. The plus ends of these microtubules are located near the site of the future cell plate. Golgi-derived vesicles are transported along microtubules towards the plus ends to deliver materials bound for the cell plate [2] [3]. During cell division, rapid microtubule reorganization in the phragmoplast requires the orchestrated activities of microtubule motor proteins such as kinesins. We isolated an Arabidopsis cDNA clone of a gene encoding an amino-terminal motor kinesin, AtPAKRP1, and have determined the partial sequence of its rice homolog. Immunofluorescence experiments with two sets of specific antibodies revealed consistent localization of AtPAKRP1 and its homolog in Arabidopsis and rice cells undergoing anaphase, telophase and cytokinesis. AtPAKRP1 started to accumulate along microtubules towards the spindle midzone during late anaphase. Once the phragmoplast microtubule array was established, AtPAKRP1 conspicuously localized to microtubules near the future cell plate. Our results provide evidence that AtPAKRP1 is a hitherto unknown motor that may take part in the establishment and/or maintenance of the phragmoplast microtubule array.  相似文献   

12.
13.
To examine the role of protein kinase A (EC 2.7.1.37) isozymes in the retinoic acid-induced growth inhibition and neuronal differentiation, we investigated the changes of protein kinase A isozyme patterns in retinoic acid-treated SH-SY5Y human neuroblastoma cells. Retinoic acid induced growth inhibition and neuronal differentiation of SH-SY5Y cells in a dose- and time-dependent manner. Neuronal differentiation was evidenced by extensive neurite outgrowth, decrease of N-Myc oncoprotein, and increase of GAP-43 mRNA. Type II protein kinase A activity increased by 1.5-fold in differentiated SH-SY5Y cells by retinoic acid treatment. The increase of type II protein kinase A was due to the increase of RIIbeta and Calpha subunits. Since type II protein kinase A and RIIbeta have been known to play important role(s) in the growth inhibition and differentiation of cancer cells, we further investigated the role of the increased type II protein kinase A by overexpressing RIIbeta in SH-SY5Y cells. The growth of RIIbeta-overexpressing cells was slower than that of parental cells, being comparable to that of retinoic acid-treated cells. Retinoic acid treatment further increased the RIIbeta level and further inhibited the growth of RIIbeta-overexpressing cells, showing strong correlation between the level of RIIbeta and growth inhibition. However, RIIbeta-overexpressing cells did not show any sign of neuronal differentiation and responded to retinoic acid in the same way as parental cells. These data suggest that protein kinase A participates in the retinoic acid-induced growth inhibition through the up-regulation of RIIbeta/type II protein kinase A.  相似文献   

14.
The mechanism by which all-trans retinoic acid (ATRA) leads to a G(1) arrest of the cell cycle remains unclear. We show here that the decrease in D-type cyclin levels observed following ATRA treatment correlates with an increase in the rate of cyclin D1 ubiquitylation in both T-47D and MCF-7 breast cancer cell lines. However, MCF-7 cells are more resistant to ATRA than T-47D cells indicating that cyclin D1 degradation is not sufficient for ATRA-mediated arrest. We found a striking difference between these cells in that while ATRA induces an elevation in the cdk inhibitor p27 in T-47D cells, this is not observed in the ATRA-resistant MCF-7 cells. Furthermore, we demonstrate that ATRA promotes the ubiquitylation of Skp2, an F-box protein that targets p27 for degradation. Moreover, overexpression of Skp2 in T-47D cells prevents accumulation of p27 and promotes resistance to ATRA. In addition, overexpression of cyclin D1 in T-47D cells also promotes ATRA resistance. We found that the mechanism of ATRA-induced ubiquitylation of cyclin D1 and Skp2 is independent of CUL-1 expression and that ATRA can rescue cyclin D1 degradation in the uterine cell line SK-UT-1, where D-type cyclins are stabilized due to a specific defect in proteolysis. These data suggest that ATRA induces a novel pathway of ubiquitylation and that the degradation of the F-box protein Skp2 is the mechanism underlying p27 accumulation and cyclin E-cdk2 inactivation following ATRA treatment.  相似文献   

15.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-beta (TGF-beta). In this paper, we show that TGF-beta inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-beta-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-beta is removed from the culture medium. The inhibitory effect of TGF-beta is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor-ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr = 116 and 80 kDa and a minor band of Mr = 100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-beta treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-beta to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   

16.
Endocytosis by cultured human skin fibroblasts of 35SO4(2-)-labelled or [3H]leucine-labelled proteoglycans from fibroblast secretions and of 125I-proteodermatan sulphate from pig skin was quantitatively investigated. The following results were obtained. (1) Core proteins prepared by digestion with chondroitin ABC lyase were at least as efficiently endocytosed as native proteoglycans. Pig skin proteodermatan sulphate was a competitive inhibitor of endocytosis of 35SO4(2-)-labelled proteoglycans. (2) Proteoglycans produced in the presence of tunicamycin and native proteoglycans degraded with endoglycosaminidase H were internalized at a normal rate. Several monosaccharides that can be bound by mammalian lectins were unable to influence the internalization of proteoglycans. Treatment of proteoglycans with neuraminidase, however, resulted in an increased clearance rate. (3) Reductive methylation or acetoacetylation of lysine residues was accompanied by a parallel decrease in the rate of proteoglycan endocytosis. Reversal of acetoacetylation normalized the uptake properties. Endocytosis of native proteoglycans was also reduced in the presence of poly-L-lysine, and this reduction in endocytosis was observed as well with proteoglycans synthesized in the presence of the lysine analogue S-2-aminoethylcysteine. These results suggest that the recognition marker required for receptor-mediated endocytosis of proteodermatan sulphate resides in its protein moiety and involves lysine residues.  相似文献   

17.
18.
The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.  相似文献   

19.
HsEg5 has microtubule-activated ATPase activity and plays essential roles in bipolar spindle formation. Because HsEg5 is validated as an attractive cancer target, in vitro biochemical assays have been developed for identifying compounds with high inhibitory activity. Several compounds, including quinazoline ring-containing compounds, have been identified and are currently in clinical trials. Although considerable progress has been made during recent years, limitations of HsEg5 in vitro screening assays still reside in two main aspects. First, colorimetric-based assays exhibit relatively low sensitivity and limited dynamic range that are unable to accurately measure compounds with nanomolar potencies. Second, current fluorescence assays are relatively low throughput without "mix and read" homogeneous features. In this study, we describe a sensitive fluorescence-based assay for HsEg5-specific inhibitors. By coupling several enzymes' activities, the release of ADP was measured quantitatively through red fluorescent resorufin. The Km for ATP hydrolysis in this assay was calculated as 23 microM. The known HsEg5 inhibitors CK0106023 and CK0238273 gave IC50 values of 9.8 and 30.6 nM, respectively. Our fluorescence assay has a 20-fold increase in sensitivity with broader dynamic range when compared with a colorimetric assay. We further automated this assay for high-throughput screening with a Z' factor of 0.8.  相似文献   

20.
Biosynthesis of human fibroblast growth factor-5.   总被引:6,自引:3,他引:6       下载免费PDF全文
We have analyzed the biosynthesis of human fibroblast growth factor-5 (FGF-5) at the translational and posttranslational levels. FGF-5 RNA synthesized in vitro can be translated in rabbit reticulocyte lysates to yield a 29,500-Da protein, which is consistent with the molecular weight predicted from the coding sequence. The efficiency of FGF-5 translation is dramatically enhanced if an upstream open reading frame (ORF-1) in the RNA is deleted or if both AUG codons in ORF-1 are destroyed by point mutations, while partial enhancement is achieved by individual mutation of either ORF-1 AUG codon. These data suggest that FGF-5 synthesis requires the scanning of ribosomes past the two ORF-1 AUG codons. The introduction of these ORF-1 mutations into a eukaryotic FGF-5 expression vector increases its capacity to transform mouse NIH 3T3 cells up to 50-fold upon transfection. FGF-5 is secreted from transfected 3T3 cells and from human tumor cells as glycoproteins containing heterogeneous amounts of sialic acid. Glycosidase treatments suggest that the growth factor bears both N-linked and O-linked sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号